JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological
University, Kerala) Since 1968

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(NBA Accredited)

COURSE MATERIAL

CST 204 DATABASE MANAGEMENT SYSTEMS

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers and

entrepreneurs for the development of the region and the Nation

MISSION OF THE INSTITUTION

e To become an ultimate destination for acquiring latest and advanced knowledge in the
multidisciplinary domains.

e To provide high quality education in engineering and technology through innovative teaching-learning
practices, research and consultancy, embedded with professional ethics.

e To promote intellectual curiosity and thirst for acquiring knowledge through outcome based
education.

e To have partnership with industry and reputed institutions to enhance the employability skills of the
students and pedagogical pursuits.

e To leverage technologies to solve the real life societal problems through community services.

ABOUT THE DEPARTMENT

» Established in: 2008
» Courses offered: B.Tech in Computer Science and Engineering

» Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them with the most
conducive environment for quality academic and research oriented undergraduate education along with moral
values committed to build a vibrant nation.

DEPARTMENT MISSION
e Provide a learning environment to develop creativity and problem solving skills in a professional
manner.
e Expose to latest technologies and tools used in the field of computer science.

e Provide a platform to explore the industries to understand the work culture and expectation of an
organization.

e Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

e Develop research interest among students which will impart a better life for the society and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

e Provide high-quality knowledge in computer science and engineering required for a computer
professional to identify and solve problems in various application domains.

e Persist with the ability in innovative ideas in computer support systems and transmit the knowledge
and skills for research and advanced learning.

e Manifest the motivational capabilities, and turn on a social and economic commitment to community
services.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an
engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems
reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering
sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system
components or processes that meet the specified needs with appropriate consideration for the public health and
safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including
design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid
conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT
tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,
safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering
practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal
and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports and design
documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and
management principles and apply these to one’s own work, as a member and leader in a team, to manage projects
and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and
life-long learning in the broadest context of technological change.

COURSE OUTCOMES

COURSE OUTCOMES
Summarize and exemplify fundamental nature and characteristics of database
systems (Cognitive Knowledge Level: Understand)
Model real word scenarios given as informal descriptions, using Entity
Relationship diagrams. (Cognitive Knowledge Level: Apply)
Model and design solutions for efficiently representing and querying data

using relational model (Cognitive Knowledge Level: Analyze)
Demonstrate the features of indexing and hashing in database applications
(Cognitive Knowledge Level: Apply)

Discuss and compare the aspects of Concurrency Control and Recovery in
Database systems (Cognitive Knowledge Level: Apply)

Explain various types of NoSQL databases (Cognitive Knowledge Level:
Understand)

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

e Use fundamental knowledge of mathematics to solve problems using suitable analysis methods, data
structure and algorithms.

e Interpret the basic concepts and methods of computer systems and technical specifications to provide
accurate solutions.

e Apply theoretical and practical proficiency with a wide area of programming knowledge, design new
ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1
CO’S | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12

1 | 2 |2 | -] -1 -1-1-1-71-7T1T7-

CO PSO MAPPING

CONTENT BEYOND SYLLABUS
S:NO TOPIC
1 Functions, Procedures and HLL interfaces
2 Cost-based query optimization

Reference Materials

Module 1: Introduction & Entity Relationship (ER) Model

Concept & Overview of Database Management Systems (DBMS) - Characteristics of Database system,
Database Users, structured, semi-structured and unstructured data. Data Models andSchema - Three Schema
architecture. Database Languages, Database architectures and classification.

ER model - Basic concepts, entity set & attributes, notations, Relationships and constraints, cardinality,
participation, notations, weak entities, relationships of degree 3.

>

>

ly

ly

lv

ly

ly

lv

lv

lv

A database is a collection of related data. Data means, known facts that can be
recorded and that have implicit meaning.

A database managementsystem (DBMS) is a collection of programs that enables users
to create and maintain a database. The DBMS is a general-purpose software system
that facilitates the processes of

defining, constructing, manipulating, and sharing databases among various users

and applications.

Defining a database involves specifying the data types, structures, and

constraints of the data to be stored in the data-base.

Constructing the database is the process of storing the data on some storage
medium that is con-trolled by the DBMS.

Manipulating a database includes functions such as querying the database to retrieve
specific data, updating the database to reflect changes in the miniworld, and

generating reports from the data.

Sharing a database allows multiple users and programs to access the

database simultaneously.

An application programaccesses the database by sending queries or requests for data
to the DBMS. A query typically causes some data to be retrieved; a transaction may
cause some data to be read and some data to be written into thedatabase.
Otherimportant functions provided by the DBMS include protectingthe database
and maintaining it over a long period of time.

Protection includes system protection against hardware or software malfunction (or
crashes) and security protection against unauthorized or malicious access.

A typical large database may have a life cycle of many years, so the DBMS must
be able to maintain the database system by allowing the system to evolve as
requirements change over time.

Database System Environment

Users/Programmers

Database |
System :
Application Programs/Queries
DBMS Y
Software Software to Process

Queries/ Programs

Y

Software to Access
Stored Data

2 N

Definition Stored Database

(Meta-Data)

Stored Database

EXAMLE STUDENT DB

STUDENT
Name | Student_number Class Major
Smith 17 1 Cs
Brown 8 2 Cs
COURSE
Course_name Course_number | Credit_hours | Department
Intro to Computer Science CS1310 4 CS
Data Structures CS3320 4 CcSs
Discrete Mathematics MATH2410 3 MATH
Database CS3380 3 CS
SECTION
Section_identifier | Course_number | Semester Year Instructor
85 MATH2410 Fall 07 King
92 CS1310 Fall 07 Anderson
102 CS3320 Spring 08 Knuth
112 MATH2410 Fall 08 Chang
1189 CS1310 Fall o8 Anderson
135 CS3380 Fall 08 Stone
GRADE_REPORT
Student_number Section_identifier Grade
17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A

PREREQUISITE

Characteristics of the Database Approach

ly ly ly

lv

PoONPE

In traditional file processing, each user defines and implements the files needed for a
specific software application as part of programming the application.

Redundancy in defining and storing data results in wasted storage space
and in redundant efforts to maintain common up-to-date data.
In the database approach, a single repository maintains data that is defined once
and then accessed by various users
The main characteristics of the database approach versus the file processing

approach are the following:

Self-describing nature of a database system

Insulation between programs and data, and data abstraction
Support of multiple views of the data

Sharing of data and multiuser transaction processing

1. Self-Describing Nature of a Database System

> A fundamental characteristic of the database approach is that the database system

contains not only the database itself but also a complete definition or description

of the database structure and constraints.

This definition is stored in the DBMS catalog, which contains information such
as the structure of each file, the type and storage format of each data item, and
various constraints on the data. The information stored in the catalog is called

meta-data and it describes

the structure of the primary database.

2. Insulation between Programs and Data, and Data Abstraction

> In traditional file processing, the structure of data files is embedded in the
application programs, so any changes to the structure of a file may require
changing all programs that access that file.
> DBMS access programs do not require such changes in most cases. The structure of
data files is stored in the DBMS catalog separately from the access programs. This
propertyiscalledprogram-dataindependence.
> An operation (also called a function or method) is specified in two parts.
e Interface
v/ The interface (or signature) of an operation includes the operation
name and the data types of its arguments (or parameters).
e Implementation
v/ The implementation (or method) of the operation is specified
separately and can be changed without affecting the interface.
> User application programs can operate on the data by invoking these operations
through their names and arguments, regardless of how the operations are
implemented. This is termed as program-operation

independence.

> The characteristic that allows program-data independence and program operation
independence is calleddata abstraction.

> A data model is a type of data abstraction that is used to provide conceptual

representation. A DBMS provides users with a conceptual representation of data
that does not include many of the details of how

the data is stored or how the operations are implemented.

> The data model hides storage and implementation details that are not of interest to
most database users.

3. Support of Multiple Views of the Data

> A database has many users, each user may require a different perspective or view of
the database. A view may be a subset of the database or it may contain virtual data
that is derived from the database files but is not explicitly stored.

> A multiuser DBMS whose users have a variety of distinct applications must

provide facilities for defining multiple views.

4. Sharing of Data and Multiuser Transaction Processing

> A multiuser DBMS, must allow multiple users to access the database at the same
time. This is essential if data for multiple applications is to be integrated and
maintained in a single database.

> The DBMS must include concurrency control software to ensure that
several users trying to update the same data do so in a controlled manner so that
the result of the updates is correct.

> A fundamental role of multiuser DBMS software is to ensure that
concurrent transactions operate correctly and efficiently.

> A transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records.

> Each transaction is supposed to execute a logically correct database access if
executed in its entirety without interference from other transactions.

> The DBMS must enforce several transaction properties.

1. Isolation property

m The isolation property ensures that each transaction

appears to execute in isolation from other transactions, even though

hundreds of transactions may be executing concurrently.

2. Atomicity property
m Theatomicityproperty ensuresthateither all the database operations
in a transaction are executed or none are.

ACTORS ON THE SCENE

> The people whose jobs involve the day-to-day use of a large database are called as

the actors on thescene.

Database Administrators
Database Designers

End Users

W DR

System Analysts and Application Programmers (Software

Engineers)

Database Administrators

> |In a database environment, the primary resource is the database itself, and the
secondary resource is the DBMS and related software. Administering these resources is
the responsibility of the database administrator (DBA).

> The DBA is responsible for authorizing access to the database, coordinating and
monitoring its use,and acquiring software and hardware resources as needed. The
DBA is accountable for problems such as security breaches and poor system

response time.

Database Designers

> Database designersare responsible for identifying the data to be stored in the data-base

and for choosing appropriate structures to represent

and store this data.

> It is the responsibility of database designers to communicate with all prospective
database users in order to understand their requirements and to create a design
that meets these requirements.

> Database designers typically interact with each potential group of users and
develop views of the database that meet the data and processing requirements of
these groups.

» Each view is then analyzed and integrated with the views of other user groups.
The final database design must be capable of supporting the requirements of all

user groups.

End Users

> End users are the people whose jobs require access to the database for querying,
updating, and generating reports.

> There are several categories of end users:

1. Casual end users

> Casual end users occasionally access the database, but they may need
different information each time.

> They use a sophisticated database query language to specify their
requests and are typically middle or high level managers or other

occasional browsers.

2. Naive or parametric end users

> Naive or parametric end users make up asizable portion
of database endusers.

> Their main job function revolves around constantly
querying and updating the database, using standard

types of queries and updates

called canned transactions that have been carefully programmed
and tested.

> The tasks that such users perform are varied:

3. Sophisticated end users

> Sophisticated end users include engineers, scientists, business
analysts, and others who thoroughly familiarize themselves with the
facilities of the DBMS in order to implement their own applications

to meet their complex requirements.

4. Standalone users

> .Standalone users maintain personal databases by using ready made
program packages that provide easy-to-use menu based or graphics
based interfaces.

> An example is the user of a tax package that stores a variety of personal

financial data for tax purposes.

System Analysts and Application Programmers (Software Engineers)

> System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for standard canned transactions
that meet these requirements.

> Application programmers implement these specifications as programs,
then they test, debug, document, and maintain these canned transactions. Such

analysts and programmers commonly referred to as

software developers or software engineers

WORKERS BEHIND THE SCENE

> The people who work to maintain the database system environment but who are
not actively interested in the database contents as part of their daily job are called
as theworkers behind the scene.

1. DBMS system designers and implementers
2. Tool developers

3. Operators and maintenance personnel (system administration personnel)

DBMS system designers and implementers

> DBMS system designers and implementers design and implement the DBMS

modules and interfaces as a software package.

> A DBMS is a very complex software system that consists of many components, or
modules, including modules for implementing the catalog, query language
processing, interface processing, accessing and

buffering data, controlling concurrency,and handling data recovery and security.

Tool developers

> Tool developers design and implement tools , the software packages that facilitate
database modeling and design, database system design, and improved performance.

> Tools are optional packages that are often purchased separately. They include
packages for database design, performance monitoring, natural language or graphical

interfaces, prototyping, simulation, and test data

generation.
Operators and maintenance personnel (system administration personnel)

> QOperators and maintenance personnel (system administration personnel) are
responsible for the actual running and maintenance of the hardware and software

environment for the database system.

ADVANTAGES OF USING THE DBMS

1. Controlling Redundancy
> Redundancy in storing the same data multiple times leads to several
problems.
a) Duplication of effort
b) Storage space is wasted
c) Files that represent the same data may become inconsisten.t
2. Restricting Unauthorized Access

> A DBMS should provide a security and authorization subsystem, which the
DBA uses to create accounts and tospecify account restrictions.

3. Providing Persistent Storage for Program Objects
> Databases can be used to provide persistentstorage for program objects and data

structures.
4. Providing Storage Structures and Search Techniques for Efficient Query Processing
> Database systems must provide capabilities for efficiently
executing queries andupdates.

> The database is typically stored on disk, the DBMS must provide

specialized data structures and search techniques to speed up

disk search for the desired records. Auxiliary files called indexes are used for
this purpose
5. Providing Backup and Recovery

> A DBMS must provide facilities for recovering from hardware or software
failures. The backup and recovery subsystem of the DBMS is responsible for
recovery.

> For example, if the computer system fails in the middle of a complex
update transaction, the recovery subsystem is responsible for making sure
that the database is restored to the state it was in
before the transaction started executing.

6. Providing Multiple User Interfaces

> Users with varying levels of technical knowledge use a database, a DBMS
should provide a variety of user interfaces.

> These include query languages for casual users, programming language
interfaces for application programmers, forms and command codes for
parametric users, and menu-driven interfaces
and natural language interfaces for standalone users.

> Both forms-style interfaces and menu-driven interfaces are commonly known
asgraphical userinterfaces (GUIs).

7. Representing Complex Relationships among Data
> A DBMS must have the capability to representa variety of complex
relationships among the data, to define new relationships as they arise, and

to retrieve and update related data easily and efficiently.

8. Enforcing Integrity Constraints
> Integrity constraints are use to ensure accuracy and consistency of data in
DB.
> A DBMS should provide capabilities for defining and enforcing these

constraints. The simplest type of integrity constraint involves

specifying a data type for each data item.

9. Permitting Inferencing and Actions Using Rules
> Some database systems provide capabilities for defining deduction rules for
inferencing new information from the stored database facts. Such systems are
calleddeductive database systems.
10. Additional Implications of Using the Database Approach

a) Potential for Enforcing Standards.

b) Reduced Application Development Time
c) Flexibility.

d) Awvailability of Up-to-Date Information

e) Economies of Scale.

DATABASE SYSTEM CONCEPTSAND ARCHITECTURE

> One fundamental characteristic of the database approach is that it provides
some level of data abstraction. Data abstraction refers to the suppression of
details of data organization and storage, and the highlighting of the essential

features for an improved understanding of data.
> A data modelis a collection of concepts that can be used to describe the
structure of a database provides the necessary means to achieve this

abstraction.

Categories of Data Models

1.High-level or conceptual data models provide concepts that are close to the way

many users perceive data.

2.1 ow-level or physical data models provide concepts that describe the details

of how data is stored on the computer storage media.

3.Representational(orimplementation)data models,which provide concepts that may
be easily understood by end users but that are not too far removed from
the way data is organized in computer

storage.

> Conceptual data models use concepts such as entities, attributes, and
relationships.

> An entity represents a real-world object or concept, such as an employee or a project
from the mini world that is described in the database.

> An attribute represents some property of interest that further describes
an entity, such as the employee’s name or salary.

> A relationship among two or more entities represents an association among the
entities, for example, a works-on relationship between an employee and a project.

> Representational or implementation data models are the models used most frequently
in traditional commercial DBMSs. They are

1. relational data model,
2. network data model
3. hierarchical data model

Schemas, Instances,and DatabaseState

> The description of a database is called thedatabaseschema, which is specified during

database design and is not expected to change frequently.

> A displayed schema is called aschema diagram.

STUDENT
[Name JStudent_number [Class J MajoJ

COURSE
| Course_name I Course_number | Credit_hoursl Department

PREREQUISITE
l Course_number I Prerequisite_number]

SECTION

| Section_identifierl Course_number [Semester l Year l Instructor

GRADE_REPORT
I Student_number l Section_identifier] Grade I

> A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints.

> The actual data in a database may change quite frequently. The data in the database
at a particular moment in time is called a database state or snapshot. Itisalso calledthe
current set of occurrencesor instances in the database. Each schema construct has its
own current set of

instances.

The difference between database schema and database state

> When we define a new database the corresponding database state is the empty state
with no data.

> We get the initial state of the database when the database is first populated or
loaded with the initial data.

> At any point in time, the database has acurrent state.

> A valid state is, a state that satisfies the structure and constraints specified in the
schema.

> The DBMS stores the descriptions of the schema constructs and

constraints also called themeta-datain the DBMS catalog.

> The schema is not supposed to change frequently ,but it is not uncommon that
changes occasionally need to be applied to the schema as the application
requirements change. It is called as schema evolution.

Three-Schema Architectureand Data Independence

The Three-Schema Architecture
> The goal of the three-schema architecture is to separate the user applications from the

physical database. In this architecture, schemas can be defined at the following three

% End Users %

levels:

External Level External External
View e View
External/Conceptual
Mapping
Conceptual Level Conceptual Schema
Conceptual/Internal t
M
apping '
Internal Level Internal Schema

1.Internal level
> 6 @ 8

. _ Stored Database .)]
> The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2.Conceptual level

> The conceptual level has a conceptual schema, which describes the structure of the
whole database for a community of users. The conceptual schema hides the details
of physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints.

3.External or view level

> The external or view level includes a number of external schemas or user views. Each
external schema describes the part of the database that a particular user group is
interested in and hides the rest of the database from that user group.

> The processes of transforming requests and results between levels are called
mappings.

DATA INDEPENDENCE

> The capacity to change the schema at one level of a database system without having
to change the schema at the next higher level.

> Two types of data independence:
1.Logical data independence

> Logical data independence is the capacity to change the conceptual schema without

having to change external schemas or application programs.

2.Physical data independence

Physical data independence is the capacity to change the internal schema

without having to change the conceptual schema.

» Data independence occurs because when the schema is changed at some level, the
schema at the next higher level remains unchanged; only the mapping between the

two levels is changed.

Database Languages and Interfaces

DBMS Languages
Data definition language (DDL), is used by the DBA and by database

designers to define conceptual and internal schemas schemas.
Storage definition language (SDL), is used to specify the internal
schema.
View definitionlanguage (VDL), to specify user views and their mappings to
the conceptual schema.
Data manipulation language (DML) is wused for retrieval,
insertion, deletion, and modification of the data.
> SQL relational database language which represents a combination of DDL, VDL,
and DML, as well as statements for constraint specification, schema evolution,
and other features.
> There are two main types of DMLs.

1. high-level or nonprocedural DML can be used on its own to specify complex
database operations concisely.

2. low-level or procedural DML must be embedded in a general-purpose
programming language. This type of DML typically retrieves individual records
or objects from the database and
processes each separately. Therefore, it needs to use programming language
constructs, such as looping, to retrieve and process each record from a set of

records. Low-level DMLs are also called record-at-a-timeDMLs

DBMS Interfaces

> User-friendly interfaces provided by a DBMS may include the following:

. Menu-Based Interfaces for Web Clients or Browsing.
Forms-Based Interfaces.

Graphical User Interfaces (GUI)

Natural Language Interfaces

Speech Input and Output

2 T o

Interfaces for Parametric Users.

DATA MODELING USING THEENTITY-RELATIONSHIP (ER) MODEL

> Entity-Relationship (ER) model, which is a popular high-level conceptual data
model, used for the conceptual design of database applications, and many database
design tools employ its concepts.

> The diagrammatic notation associated with the ER model, known as ER

diagrams.

Entity, Types, Entity Sets, Attributes,and Keys

> An entity may be an object with a physical existence for example, a particular
person, car, house, or employee or it may be an object with a conceptual
existence.

> Each entity hasattributes,the particular properties that describe it.
Composite versus Simple (Atomic) Attributes

> Composite attributes can be divided into smaller subparts, which represent more

basic attributes with independent meanings.

> Attributes that are not divisible are calledsimple or atomicattributes.
Single-Valued versus Multivalued Attributes

> Attributes have a single value for a particular entity; such attributes are called single-
valued.

For example, Age is a single-valued attribute of a person.

> Attribute that can have different numbers of values for same attributes are called
multivalued.

Eg:College_degrees attribute Stored

versus Derived Attributes

> In some cases, two (or more) attribute values are related ,for example,
the Age and Birthdate attributes of a person. For a particular person entity, the
value of Age can be determined from the current (today’s) date and the value of that
person’s birthdate. The Age attribute is hence called a derived attribute and is
said to be derivable from the birthdate attribute, which is called astored attribute.

NULL Values

> In some cases, a particular entity may not have an applicable value for an

attribute.

Complex Attributes

> Composite and multivalued attributes can be nested. }. Such attributes are called
complex attributes.

Entity type

> An entity type defines a collection (or set) of entities that have the same

attributes. Each entity type in the database isdescribed by its name and attributes.

Entity set

> The collection of all entities of a particular entity type in the data-base at any point
in time is called an entity set, the entity set is usually referred to using the same
name as the entity type.

> An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped

into an entity set, which is also called the

extension of the entity type.

Key attributes and entity type

> An important constraint on the entities of an entity type is the keyor
uniqueness constrainton attributes.

> An entity type usually has one or more attributes whose values are distinct for
each individual entity in the entity set. Such an attribute is called a key
attribute, and its values can be used to identify each entity uniquely.

Composite key
> |t must be minimal,that is, all componentattributes must be included in the

composite attribute to have the uniquenessproperty.

RELATIONSHIP TYPES RELATIONSHIP SETS, ROLES, AND
STRUCTURAL CONSTRAINTS

> A relationship type R among n entity types E1, E2, ..., Eh defines a set of associations
or a relationship set among entities from these entity types.

> As for the case of entity types and entity sets, a relationship type and its
corresponding relationship set are customarily referred to by the same name, R.

Mathematically, the relationshipset R is a set of relationship
instances rj,

> where each rj associates n individual entities (eq, e2, ..., en), and each entity ej in
rj is a member of entity setEj, 1 fjfn.

> Hence, a relationship set is a mathematical relation on E1, Eo, ..., Ep; alter-
natively, it can be defined as a subset of the Cartesian product of

the entity sets Eq1 x Ep x ... X Ep.

> Each of the entity types E1, E 2, ..., Ep is said to participate in the relationship
type R; similarly, each of the individual entities e1, eo, ..., en is said to participate

in the relationship instance
ri = (e1, €2, ..., en).

Degree of a Relationship Type

> The degree of a relationship type is the number of participating entity types.

> A relationship type of degree two is called binary, and one of degree three is called
ternary.

Role name

> The role name signifies the role that a participating entity from the entity type
plays in each relationship instance, and helps to explain what the relationship
means.

> The relationship types in which the same entity type participates more than once

in a relationship type in different roles such relationship

types are called recursive relationships.
Constraints on Binary Relationship Types

> Relationship types usually have certain constraints that limit the possible
combinations of entities that may participate in the corresponding relationship
set.

> Two main types of binary relationship constraints: cardinality ratio and
participation.

Cardinality Ratios for Binary Relationships

> The cardinality ratio for a binary relationship specifies the maximum number of
relationship instances that an entity can participate in.

> The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and
M:N.

Participation Constraints and Existence Dependencies

> The participation constraint specifies whether the existence of an entity depends on
its being related to another entity via the relationship type.

> This constraint specifies the minimum number of relationship instances that each
entity can participate in, and is sometimes called the minimum cardinality constraint

> There are two types of participation constraints, they are total and

partial
1.Total participation
> Total participation is also calledexistence dependency
2. Partial participation

> partial, meaning that some or part of the set of employee entities are

related to some department entity but not necessarily all.

In ER diagrams, total participation (or existence dependency) is displayed as a
double line connecting the participating entity type to the relationship,

partial participation is represented by asingle line

The cardinality ratio and participation constraints, are together known as the structural
constraintsof a relationship type.

WEAK ENTITY TYPES

> Entity types that do not have key attributes of their own are called weak entity types.

> Weak entity are identified by being related to specific entities from another entity
type in combination with one of their attribute values.
> This other entity type is called theidentifyingor owner entity type,

> The relationship type that relates a weak entity type to its owner is called the
identifying relationshipof the weak entity type.
> A weak entity type always has a total participation constraint (existence

dependency) with respect to its identifying relationship because a weak entity can
not be identified without an owner entity.
> A weak entity type normally has a partial key, which is the attribute

that can uniquely identify weak entities that are related to the same owner entity.

Design Choices for ER Conceptual Design

Meaning

Entity

Weak Entity

Relationship

Indentifying Relationship

Attribute

Key Attribute

Muttivalued Attribute

Composite Attribute

Derived Attribute

Total Participation of E;in R

Cardinality Ratio 1: N for £,:E,in R

Module 2: Relational Model

Structure of Relational Databases - Integrity Constraints, Synthesizing ER diagram to relational schema Introduction to
Relational Algebra - select, project, cartesian product operations, join - Equi-join, natural join. query examples,
introduction to Structured Query Language (SQL), Data Definition Language (DDL), Table definitions and operations —
CREATE, DROP, ALTER, INSERT, DELETE, UPDATE.

Relational Model Concepts

e The relational Model of Data is based on the concept of a Relation.

® A Relation is a mathematical concept based on the ideas of sets.

e The strength of the relational approach to data management comes from the formal foundation provided
by the theory of relations.

Relation

e RELATION: A table of values

A relation may be thought of as a set of rows.

— Arrelation may alternately be thought of as a set of columns.

— Each row represents a fact that corresponds to a real-world entity or relationship.

— Each row has a value of an item or set of items that uniquely identifies that row in the table.
— Sometimes row-ids or sequential numbers are assigned to identify the rows in the table.

— Each column typically is called by its column name or column header or attribute name.

Schema of a Relation
® A Relation may be defined in multiple ways.
e The Schema of a Relation: R (A1, A2, An)
Relation schema R is defined over attributes A1, A2, An
For Example -
CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four attributes Cust-id, Cust-name, Address, Phone#, each of which has a
domain or a set of valid values. For example, the domain of Cust-id is 6 digit numbers.

Tuples
e Atupleis an ordered set of values
e Each value is derived from an appropriate domain.

e Each row in the CUSTOMER table may be referred to as a tuple in the table and would consist of four
values.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
is a tuple belonging to the CUSTOMER relation.
e Arelation may be regarded as a set of tuples (rows).

e Columns in a table are also called attributes of the relation.

[J
Domains
e A domain has a logical definition: e.g.,
“USA_phone_numbers” are the set of 10 digit phone numbers valid in the U.S.

e A domain may have a data-type or a format defined for it. The USA_phone_numbers may have a format:
(ddd)-ddd-dddd where each d is a decimal digit. E.g., Dates have various formats such as monthname,
date, year or yyyy-mm-dd, or dd mm,yyyy etc.

e An attribute designates the role played by the domain. E.g., the domain Date may be used to define
attributes “Invoice-date” and “Payment-date”.

FORMAL DEFINITIONS

The relation is formed over the cartesian product of the sets; each set has values from a domain; that domain is used in a
specific role which is conveyed by the attribute name.

For example, attribute Cust-name is defined over the domain of strings of 25 characters. The role these strings play in
the CUSTOMER relation is that of the name of customers.

Formally,

Given R(A1, A2, , An)

r(R) € dom (A1) X dom (A2) X X dom(An)
R: schema of the relation

r of R: a specific "value" or population of R.

R is also called the intension of a relation r is also called the extension of a relation

Let S1={0,1}

Let S2 ={a,b,c} Let R © S1 X S2

Then for example: r(R) = {<0,a>, <0,b>, <1,c>}

is one possible “state” or “population” or “extension” r of the relation R, defined over domains S1 and S2. It has three
tuples.

Relation name Attributes
STUDENT Name SSN HomePhone Address OfficePhone |Age| GPA
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 | 321
Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 | 2.89
% Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 | 353
Tuples =—— | Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 | 393
Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 | 325

CHARACTERISTICS OF RELATIONS

e Ordering of tuples in a relation r(R): The tuples are not considered to be ordered, even though they
appear to be in the tabular form.

e Ordering of attributes in a relation schema R (and of values within each tuple): We will consider the
attributes in R(A1, A2, ..., An) and the values in t=<v1, v2, ..., vn> to be ordered .

(However, a more general alternative definition of relation does not require this
ordering).

e Valuesin a tuple: All values are considered atomic (indivisible). A special null value is used to represent
values that are unknown or inapplicable to certain tuples.

e component values of a tuple t by t[Ai] = vi (the value of attribute Ai for tuple t).
Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the values of attributes

Au, Av, ..., Aw, respectively.

| STUDENT Name SSN HomePhone Address OfficePhone Age [GPA
Dick Davidson 422-11-2320 null 3452 Elgin Road 749-1253 25 3.53
Barbara Benson 533-69-1238 839-8461 7384 Fontana Lane null 19 [325
Charles Cooper 489-22-1100 376-9821 265 Lark Lane 749-6492 28 3.93
Katherine Ashly 381-62-1245 375-4409 125 Kirby Road null 18 | 2.89
Benjamin Bayer 305-61-2435 373-1616 2918 Bluebonnet Lane null 19 3.21

Relational Integrity Constraints

e Constraints are conditions that must hold on all valid relation instances. There are three main types of
constraints:

1. Key constraints
2. Entity integrity constraints
3. Referential integrity constraints Key Constraints

e Superkey of R: A set of attributes SK of R such that no two tuples in any valid relation instance r(R) will
have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R), t1[SK] # t2[SK].

e Key of R: A "minimal" superkey; that is, a superkey K such that removal of any attribute from K results in a
set of attributes that is not a superkey.

Example: The CAR relation schema:

CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys Key1 = {State, Reg#}, Key2 = {SerialNo}, which are also superkeys. {SerialNo, Make} is a superkey but not a
key.

e If arelation has several candidate keys, one is chosen arbitrarily to be the primary key. The primary key
attributes are underlined.

Figure 7.4 The CAR relation with two candidate keys:
LicenseNumber and EngineSerialNumber.

CAR LicenseNumber EngineSerialNumber Make Model Year
Texas ABC-739 AB9352 Ford Mustang 96
Florida TVP-347 B43696 Oldsmobile Cutlass 99
New York MPO-22 X83554 Oldsmobile Delta 95
California 432-TFY C43742 Mercedes 180-D 93
California RSK-629 Y82935 Toyota Camry 98
Texas RSK-629 U028365 Jaguar XJS 98

® Addison Wesley Longman, Inc. 2000, Eimasri/Navathe, Fundamentals of Database Systems, Third Edition

Entity Integrity

o Relational Database Schema: A set S of relation schemas that belong to the same database. S is the name
of the database.

S={R1,R2, .., Rn}

e Entity Integrity: The primary key attributes PK of each relation schema R in S cannot have null
values in any tuple of r(R). This is because primary key values are used to identify the individual tuples.
t[PK] # null for any tuple t in r(R) for any R

o Note: Other attributes of R may be similarly constrained to disallow null values, even though
they are not members of the primary key.
Referential Integrity

® A constraint involving two relations (the previous constraints involve a single relation).

e Used to specify a relationship among tuples in two relations: the referencing relation and the
referenced relation.

e Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the
primary key attributes PK of the referenced relation R2. A tuple t1 in R1 is said to reference a tuple t2 in
R2 if t1[FK] = t2[PK].

e Areferential integrity constraint can be displayed in a relational database schema as a directed

arc from R1.FK to R2.PK

Referential Integrity Constraint

Statement of the constraint

The value in the foreign key column (or columns) FK of the the referencing relation R1 can be either:

(1) avalue of an existing primary key value of the corresponding primary key PK in the
referenced relation R2,, or..
(2) anull.

In case (2), the FK in R1 should not be a part of its own primary key.

Figure 7.5 Schema diagram for the COMPANY relational
database schema; the primary keys are underlined.

EMPLOYEE
FNAME | MINIT | LNAME | SSN l BDATE ‘ ADDRESS | SEX | SALARY | SUPERSSN | DNO |
DEPARTMENT
’ DNAME I DNUMBER | MGRSSN I MGRSTARTDATE ‘
DEPT_LOCATIONS
’ DNUMBER ! DLOCATION |
PROJECT

‘ PNAME I PNUMBER l PLOCATION ’ DNUM |

WORKS_ON

| ESSN | PNO ‘ HOURS ‘

DEPENDENT
| ESSN DEPENDENT_NAME ‘ SEX ‘ BDATEl RELATIONSHIP
1

® Addison Wesley Longman, Inc. 2000, EImasri/Navathe, Fundamentals of Database Systems, Third Edition

Figure 7.6 One possible relational database state
corresponding to the COMPANY schema.

[[emProvie | Fname [s | camc SSN BDATE ADDRLSS SEX | SALARY | SUPERSSN [DNO
Jaoln Somin wemsores | 19650109 731 Fondwn, Houston, TX M 20000
Frenkin wang 5555 _| 19661208 638 Voss, Housion, TX M 40000 s
icia Zokaya | epa6n/77/ | 19680119 521 Castle, Spring, X & 23000 A
Jorvier WeBaco | 8654321 _| 1941061 251 Bony, Goloks, TX = 43000 4
Fanosh Nawyon | G684 | 19620015 575 Fro Ok, Humblo, TX ™M 36000
Joyee Engieh | A50450450 0731 5631 Moo, Housion, TX F 25000
Anmad Jabter | o8rn0on7 | 19690329 560 Gatlan, Housion, TX ™M 23000 Pl
Jarres = BBaGeS556 | 16971110 450 Sxone. Housion, TX M 5000 1

DEPT_LOCATIONS DNUMBER | DLOCATION.

Housion
atient
DEPARTMENT DNAME DNUMBER | MGRSSN MGRSTARTDATE Pakain
Toanarch 5 T 19660522 i
[onr6ota21 190101
Hoadganers 1 P 16610619
WORKS ON | ESSN | PNO [HOURS

TR 2

T2
60
A
Y PROJECT PNAME PNUMBER | PLOGATION | DNUM
TS Produst 1 foaremy
T Evoduety z Sunaian 5
g Productz a Housee Y
oMse | % — = Py A
oo | <3 pers -
SO000TXHE a X Nowbono: D artord P
wormns | 1 £

7 5

7621 S

seroAsR1 5,

TS il

DEPLNDLNT LS8N DEPENDENT_NAME | SEX | BDATE RELATIONSHIP.

A Aiew = | mmeoacs CAUGHTER

20056 Theoders M| temo2s SON

0t oy, = | issosoa SO

santi) Abror M| totzozza SPOUSE

123456070 Machat M| 1oes0i.04 SON

120406700 Ao T | temaizao DAUGHTER

12340 Blmbon = | mroses spousE

® Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Figure 7.7 Referential integrity constraints displayed

EMPLOYEE

on the COMPANY relational database schema diagram.

N

| FNAME | MINIT ILNAME SSN ‘ BDATE ‘ ADDRESS ‘ SEX‘ SALARY ‘ SUPERSSN | DNO‘

r

DEPARTM

A}
‘DNAME | DNUMBER | MGRSSN | MGRSTARTDATE |

DEPT_LOCATIONS

| DNUMBER DLOCATICN

PROJECT

A}
ESSN PNO ‘ HOURS |

‘ PNAME | PNUMBER | PLOCATION ‘ DNUM ‘

DEPENDENT

| ESSN | DEPENDENT_NAME [SEX | BDATE I RELATIONSHIP
I

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Update Operations on Relations

INSERT a tuple.
DELETE a tuple.

MODIFY a tuple.

Integrity constraints should not be violated by the update operations.
Several update operations may have to be grouped together.

Updates may propagateto cause other updates automatically. This may be necessary to maintain
integrity constraints.

In case of integrity violation, several actions can be taken: (e.g. Tables: Employee and Work_On) Cancel
the operation that causes the violation (REJECT option)

Perform the operation but inform the user of the violation

Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option) Execute a user-specified
error-correction routine

Q. Consider the following relations for a database that keeps track of student enrollment in courses and the books
adopted for each course:

STUDENT(SSN, Name, Major, Bdate) COURSE(Course#t, Cname, Dept) ENROLL(SSN, Course#t, Quarter, Grade)

BOOK_ADOPTION(Course#t, Quarter, Book ISBN) TEXT(Book ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this schema.

Relational Algebra

Relational algebra is the basic set of operations for the relational model
These operations enable a user to specify basic retrieval requests (or queries)

The result of an operation is a new relation, which may have been formed from one or more input
relations

This property makes the algebra “closed” (all objects in relational algebra are relations)
The algebra operations thus produce new relations

These can be further manipulated using operations of the same algebra

A sequence of relational algebra operations forms a relational algebra expression

The result of a relational algebra expression is also a relation that represents the result of a database
query (or retrieval request)

Relational Algebra consists of several groups of operations

0 Unary Relational Operations
* SELECT (symbol: s (sigma))
*= PROIJECT (symbol: p (pi))
*» RENAME (symbol: p (rho))
0 Relational Algebra Operations From Set Theory
= UNION (E), INTERSECTION (G), DIFFERENCE (or MINUS, —)
= CARTESIAN PRODUCT (x)
0 Binary Relational Operations
* JOIN (several variations of JOIN exist)

= DIVISION

0 Additional Relational Operations
= OUTERJOINS, OUTER UNION

*» AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM,
COUNT, AVG, MIN, MAX)

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.
EMPLOYEE

| Fname | Minit | Lname | Ssn | Bdate | Address I Sex I Salary I Super_ssnl Dno |
Ad |

DEPARTMENT
| Dname | Dnumber | Mgr_ssnl Mgr_start_date|
YY)

DEPT_LOCATIONS
| Dnumber | Dlocation |

PROJECT
| Pname | Pnumber | Plocation I Dnum

A L |
WORKS_ON

|@|Pﬂ|Hours|

DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship
.

Unary Relational Operations: SELECT

m The SELECT operation (denoted by s (sigma)) is used to select a subset of the tuples from a relation based
on a selection condition.

m The selection condition acts as a filter
m Keeps only those tuples that satisfy the qualifying condition
m Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)
m Examples:
m Select the EMPLOYEE tuples whose department number is 4: s DNO = 4 (EMPLOYEE)
m Select the employee tuples whose salary is greater than $30,000:
s SALARY > 30,000 (EMPLOYEE)
m In general, the select operation is denoted by s <selection condition>(R) where
m the symbol s (sigma) is used to denote the select operator

m the selection condition is a Boolean (conditional) expression specified on the attributes of relation
R

m tuples that make the condition true are selected
m appear in the result of the operation

m tuples that make the condition false are filtered out

m discarded from the result of the operation

m SELECT Operation Properties

® The SELECT operation s <selection condition>(R) produces a relation S that has the
same schema (same attributes) as R

e SELECT s is commutative:
® s <condition1>(s < condition2> (R)) = s <condition2> (s < condition1> (R))
e Because of commutativity property, a cascade (sequence) of SELECT
operations may be applied in any order:
® s<condl>(s<cond2> (s<cond3> (R)) = s<cond2> (s<cond3> (s<cond1> (R)))
® A cascade of SELECT operations may be replaced by a single
selection with a conjunction of all the conditions:
® s<condl>(s< cond2> (s<cond3>(R)) = s <cond1> AND < cond2> AND < cond3>(R)))
® The number of tuples in the result of a SELECT is less than (or equal

to) the number of tuples in the input relation R The following query results refer to this database state

Figure 5.6
One possible database state for the COMPANY relational database schema.
EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Sex |Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 (333445555 | 5
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 |888665555 | 5
Alicia J Zelaya | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX F |25000 [987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 [888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 [333445555 5
Joyce A English | 453453453 | 1972-07-31 |5631 Rice, Houston, TX F |25000 [333445555 5
Ahmad \ Jabbar | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX M |25000 (987654321 4
James E Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M 55000 |NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation
Research 5 333445555 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno | Hours Pname Pnumber | Plocation | Dnum
123456789 1 32.5 ProductX 1 Bellaire 5
123456789 2 7.5 ProductY 2 Sugarland 5
666884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Newbenefits 30 Stafford 4
333445555 3 10.0
333445555 10 10.0 DEPENDENT
835445505 20 | 900 Essn Dependent_name | Sex | Bdate Relationship
999887777 30 | 300 333445555 Alice F | 1986-04-05 | Daughter
999887777 10 | 100 3334455656 | Theodore M | 1983-10-25 | Son
987987987 10 35.0 333445555 Joy F 1958-05-03 | Spouse
987987987 30 5.0 987654321 Abner M 1942-02-28 | Spouse
987654321 30 | 200 123456789 Michael M | 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
888665555 20 NULL 123456789 Elizabeth F 1967-05-05 | Spouse

Unary Relational Operations: PROJECT
m PROIJECT Operation is denoted by p (pi)
m This operation keeps certain columns (attributes) from a relation and discards the other columns.
m PROIJECT creates a vertical partitioning
m The list of specified columns (attributes) is kept in each tuple
m The other attributes in each tuple are discarded

m Example: To list each employee’s first and last name and salary, the following is used: pLNAME,
FNAME,SALARY(EMPLOYEE)

m The general form of the project operation is:
p<attribute list>(R)
m p (pi) is the symbol used to represent the project operation
m <attribute list> is the desired list of attributes from relation R.
m The project operation removes any duplicate tuples
m This is because the result of the project operation must be a set of tuples
m Mathematical sets do not allow duplicate elements.

m PROJECT Operation Properties

m The number of tuples in the result of projection p<list>(R) is always less or equal to the

number of tuplesin R

m If the list of attributes includes a key of R, then the number of tuples in the result of
PROJECT is equal to the number of tuples in R

m PROJECT is not commutative

m p<listl> (p <list2> (R)) = p <list1> (R) as long as <list2> contains the attributes in <list1>

Figure 6.1
Results of SELECT and PROJECT operations. (a) O(pno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(D) Toisiaime, Franie; salay(EMPLOYEE). (€) Tty Sa,a,y(EMPLOYEE).

€))
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
Franklin) Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F 43000 | 888665555 | 4
Ramesh | K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M | 38000 |333445555 | 5
(b) (c)
Lname Fname Salary Sex | Salary
Smith John 30000 M | 30000
Wong Franklin | 40000 M | 40000
Zelaya Alicia 25000 E 25000
Wallace | Jennifer | 43000 F 43000
Narayan | Ramesh | 38000 M | 38000
English | Joyce 25000 M | 25000
Jabbar Ahmad 25000 M | 55000
- Borg James 55000

To retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a
select and a project operation

m We can write a single relational algebra expression as follows:
m pFNAME, LNAME, SALARY(s DNO=5(EMPLOYEE))
m OR We can explicitly show the sequence of operations, giving a name to each intermediate
relation:
m DEP5_EMPS ¢ s DNO=5(EMPLOYEE)
m RESULT < p FNAME, LNAME, SALARY (DEP5_EMPS)

Unary Relational Operations: RENAME

m The RENAME operator is denoted by p (rho)
m Insome cases, we may want to rename the attributes of a relation or the relation name or both
m Useful when a query requires multiple operations
m Necessary in some cases
m The general RENAME operation p can be expressed by any of the following forms:
pS (B1, B2, ..., Bn)(R) changes both:
the relation name to S, and
the column (attribute) names to B1, B1,Bn
p (R) changes:

the relation name only to S

p(B1, B2, ..., Bn)(R) changes:
the column (attribute) names only to B1, B1,Bn
m For convenience, we also use a shorthand for renaming attributes in an intermediate relation:
m If we write:
* RESULT <& p FNAME, LNAME, SALARY (DEP5_EMPS)
e RESULT will have the same attribute names as DEP5_EMPS (same attributes as
EMPLOYEE)
m If we write:

* RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)< p FNAME, LNAME, SALARY
(DEP5_EMPS)

m The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX, SAL, SU, DNO, respectivel

(a)

Fname Lname | Salary
John Smith 30000
Franklin | Wong 40000
Ramesh | Narayan | 38000
Joyce English | 25000

(b)

TEMP
Fname Minit | Lname Ssn Bdate Address Sex | Salary Super_ssn [Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston,TX | M 30000 | 333445555 5
Franklin Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M 40000 | 888665555 5
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | M 38000 | 333445555 | 5
Joyce A English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX F 25000 | 333445555 | 5

R
First_name | Last_name | Salary
John Smith 30000
Franklin Wong 40000 Figure 6.2
e — Narayan 38000 Results of a sequence of operations.
Joyce English 25000 (a) 7tFname, Lname, Sa\ary(GDno:5(EM PLOYEE))'

(b) Using intermediate relations and renaming of attributes.

m UNION Operation

m Binary operation, denoted by E
m Theresult of RES, is a relation that includes all tuples that are either in R orin S or in both R and
S
m Duplicate tuples are eliminated
m The two operand relations R and S must be “type compatible” (or UNION compatible)
m R andS must have same number of attributes
m Each pair of corresponding attributes must be type compatible (have same or compatible
domains)
m Example:
m To retrieve the social security numbers of all employees who either work in department 5
(RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)
m We can use the UNION operation as follows: DEP5_EMPS & sDNO=5 (EMPLOYEE) RESULT1 ¢ p
SSN(DEP5_EMPS) RESULT2(SSN) ¢ pSUPERSSN(DEP5_EMPS) RESULT ¢ RESULT1 E RESULT2
m The union operation produces the tuples that are in either RESULT1 or RESULT2 or both
Figure 6.3 RESULT1 RESULT2 RESULT
Result of the
UNION operation Ssn Ssn Ssn
RESULT <« RESULT1 123456789 333445555 123456789
U RESULT2. 333445555 888665555 333445555
666884444 666884444
453453453 453453453
888665555

m Type Compatibility of operands is required for the binary set operation UNION E, (also for INTERSECTION
G, and SET DIFFERENCE)

R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:

they have the same number of attributes, and

m the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) fori=1, 2, ...,
n).

m The resulting relation for R1IER2 (also for RICR2, or R1-R2, see next slides) has the same attribute names
as the first operand relation R1 (by convention)

m INTERSECTION is denoted by A
m The result of the operation R A S, is a relation that includes all tuples that are in both Rand S
m The attribute names in the result will be the same as the attribute names in R

m The two operand relations R and S must be “type compatible”

m SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by —
m Theresult of R-S§, is a relation that includes all tuples that are in R but notin S

m The attribute names in the result will be the same as the attribute names in R

(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname (b) Fn Ln
Susan Yao John Smith Susan Yao
Ramesh | Shah Ricardo Browne Ramesh | Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara | Jones Francis Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Ernest Gilbert Ernest Gilbert
John Smith
Ricardo Browne
Francis Johnson
(© Fn Ln (d) Fn Ln (® | Fname Lname
Susan Yao Johnny Kohler John Smith
Ramesh | Shah Barbara | Jones Ricardo Browne
Amy Ford Francis Johnson
Jimmy Wang
Ernest Gilbert

Figure 6.4
The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.
(b) STUDENT W INSTRUCTOR. (c) STUDENT M INSTRUCTOR. (d) STUDENT — INSTRUCTOR.
(e) INSTRUCTOR — STUDENT.
m Thetwo.operand relations R and,S;must.be “type.compatible”
m Notice that both union and intefsection'are commutative operations; that is
m RES=SERandRCS=SCR

m Both union and intersection can be treated as n-ary operations applicable to any number of relations as
both are associative operations; that is

m RE(SET)=(RES)ET
m (RCS)CT=RC(SCT)

m The minus operation is not commutative; that is, in general R—S#S—R

CARTESIAN PRODUCT
m CARTESIAN (or CROSS) PRODUCT Operation

m This operation is used to combine tuples from two relations in a combinatorial fashion.

m Denoted by R(A1, A2, ..., An)x S(B1, B2, ..., Bm)
m Resultis a relation Q with degree n + m attributes:
m Q(A1,A2,... An,B1,B2,...,Bm),inthat order.

m The resulting relation state has one tuple for each combination of tuples—one from R and one
from S.

m Hence, if R has nR tuples (denoted as |R| =nR), and S has nS tuples, then R x S will have nR * nS
tuples.

m The two operands do NOT have to be "type compatible”

m Generally, CROSS PRODUCT is not a meaningful operation Can become meaningful when followed
by other operations Example (not meaningful):

FEMALE_EMPS & s SEX="F'(EMPLOYEE) EMPNAMES & p FNAME, LNAME, SSN (FEMALE_EMPS) EMP_DEPENDENTS <
EMPNAMES x DEPENDENT

EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT whether or not they are actually
related

Figure 6.5
The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

FEMALE_EMPS

Fname |Minit | Lname Ssn Bdate Address Sex| Salary| Super_ssn [Dno
Alicia i) Zelaya |999887777 [1968-07-19 | 3321Castle, Spring, TX | F [25000(987654321| 4
Jennifer | S | Wallace | 987654321 |1941-06-20 | 291Berry, Bellaire, TX F |[43000|888665555| 4
Joyce A | English | 4563453453 |1972-07-31 | 5631 Rice, Houston, TX| F |25000|333445555(5
EMPNAMES
Fname | Lname Ssn
Alicia Zelaya | 999887777
Jennifer | Wallace | 987654321
Joyce | English | 453453453
EMP_DEPENDENTS
Fname | Lname Ssn Essn Dependent_name Sex Bdate
Alicia Zelaya | 999887777 | 333445555 Alice F 1986-04-05
Alicia Zelaya | 999887777 | 333445555 Theodore M 1983-10-25
Alicia Zelaya | 999887777 | 333445555 Joy F 1958-05-03
Alicia | Zelaya |999887777 | 987654321 Abner M | 1942-02-28
Alicia Zelaya | 999887777 | 123456789 Michael M | 1988-01-04
Alicia Zelaya | 999887777 | 123456789 Alice F 1988-12-30
Alicia Zelaya | 999887777 | 123456789 Elizabeth F 1967-05-05
Jennifer | Wallace | 987654321 | 333445555 Alice E 1986-04-05
Jennifer | Wallace | 987654321 | 333445555 Theodore M | 1983-10-25
Jennifer | Wallace | 987654321 | 333445555 Joy F 1958-05-03
Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28
Jennifer | Wallace | 987654321 | 123456789 Michael M | 1988-01-04
Jennifer | Wallace | 987654321 | 123456789 Alice F 1988-12-30
Jennifer | Wallace | 987654321 | 123456789 Elizabeth F 1967-05-05
Joyce English | 453453453 | 333445555 Alice F 1986-04-05
Joyce English | 453453453 | 333445555 Theodore M | 1983-10-25
Joyce English | 453453453 | 333445555 Joy E 1958-05-03
Joyce English | 453453453 | 987654321 Abner M 1942-02-28
Joyce English | 453453453 | 123456789 Michael M | 1988-01-04
Joyce English | 453453453 | 123456789 Alice F 1988-12-30
Joyce |English | 453453453 | 123456789 Elizabeth F 1967-05-05
ACTUAL_DEPENDENTS
Fname | Lname Ssn Essn Dependent_name Sex Bdate
Jennifer | Wallace | 987654321 | 987654321 Abner M 1942-02-28
RESULT
Fname | Lname |Dependent_name
Jennifer | Wallace Abner
Binary Relational Operations: JOIN (denoted by)
m The sequence of CARTESIAN PRODECT followed by SELECT is used quite commonly to identify and
select related tuples from two relations
m A special operation, called JOIN combines this sequence into a single operation
m This operation is very important for any relational database with more than a single relation,
because it allows us combine related tuples from various relations
m The general form of a join operation on two relations R(A1, A2, .. ., An) and S(B1, B2, ..
., Bm) is:
R <join condition>S
m where R and S can be any relations that result from general relational algebra
expressions.
DEPT_MGR
Dname Dnumber Mgr_ssn e Fname | Minit | Lname Ssn
Research 5 333445555 | - Franklin T Wong 333445555
Administration 4 987654321 geites Jennifer S Wallace | 987654321
Headquarters 1 888665555 | *** | James E Borg 888665555
Figure 6.6
Result of the JOIN operation
EQUUOIN

m The most common use of join involves join conditions with equality comparisons only

m Such ajoin, where the only comparison operator used is =, is called an EQUIJOIN.

m Inthe result of an EQUIJOIN we always have one or more pairs of attributes (whose names need
not be identical) that have identical values in every tuple.

NATURAL JOIN Operation

Another variation of JOIN called NATURAL JOIN — denoted by * — was created to get rid of the second (superfluous)
attribute in an EQUIJOIN condition.

because one of each pair of attributes with identical values is superfluous

The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes,
have the same name in both relations

If this is not the case, a renaming operation is applied first.

m Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT

and DEPT_LOCATIONS, it is sufficient to write:
0 DEPT_LOCS < DEPARTMENT * DEPT_LOCATIONS
m Only attribute with the same name is DNUMBER
m Animplicit join condition is created based on this attribute:
0 DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER
0 Another example: Q ¢ R(A,B,C,D) * S(C,D,E)

0 The implicit join condition includes each pair of attributes with the same name, “AND”ed
together:

= R.C=S.CANDR.D.S.D
0 Result keeps only one attribute of each such pair:

* Q(ABCDE)

(@
PROJ_DEPT
Pname Pnumber Plocation Dnum Dname Mgr_ssn Mgr_start_date
ProductX 1 Bellaire 5 Research 333445555 1988-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
ProductZ 3 Houston 5 Research 333445555 1988-05-22
Computerization 10 Stafford 4 Administration | 987654321 1995-01-01
Reorganization 20 Houston 1 Headquarters | 888665555 1981-06-19
Newbenefits 30 Stafford 4 Administration | 987654321 1995-01-01
(b)
DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-19 Houston
Administration 4 987654321 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 333445555 1988-05-22 Houston

Figure 6.7

Results of two NATURAL JOIN operations.

(a) PROJ_DEPT «— PROJECT * DEPT.

(b) DEPT_LOCS <«— DEPARTMENT #* DEPT_LOCATIONS.

m DIVISION Operation
The division operation is applied to two relations

R(Z) , S(X), where X subset Z. Let Y = Z - X (and hence Z = X E Y); that is, let Y be the set of attributes of R that are not
attributes of S.

The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR appear in R with tR
[Y] =t, and with

tR [X] = ts for every tuple ts in S.

For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in

combination with every tuple in S.

(@
SSN_PNOS SMITH_PNOS
Essn Pno Pno
123456789 1 1
123456789 2 2
666884444 3
453453453 1
453453453 2 SSNS
333445555 2 Ssn
333445555 3 123456789
333445555 10 453453453
333445555 20
999887777 30
999887777 10
987987987 10
987987987 30
987654321 30
987654321 20
888665555 20
Figure 6.8

The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T« R+ S.

(b)

A B A

al b1 al

a2 b1 a2
a3 b1 a3
a4 b1

ail b2

a3 b2 B

a2 b3 b1
a3 b3 b4
a4 b3

ail b4

a2 b4

a3 b4

Table 6.1
Operations of Relational Algebra

Operation Purpose Notation
SELECT Selects all tuples that satisfy the selection condition O qelection conditions (R)
from a relation R.
PROJECT Produces a new relation with only some of the Teaabaenis(R)
attributes of R, and removes duplicate tuples.
THETA JOIN Produces all combinations of tuples from R, and R, Ry ™ jgin condition> Rz
that satisfy the join condition.
EQUUOIN Produces all the combinations of tuples from R, and R ™M oin condition> Ro»
R, that satisfy a join condition with only equality OR R (ioin attributes 1),
comparisons. (<join attributes 2>) Ko
NATURAL JOIN ~ Same as EQUIJOIN except that the join attributes of R, Ry*.join conditions> Ra»
are not included in the resulting relation; if the join OR Ri* (join attributes 13),
attributes have the same names, they do not have to (<join attributes 2>) K2
be specified at all. OR R, * R,
UNION Produces a relation that includes all the tuples in R, R, UR,
or R, or both R, and R,; R, and R, must be union
compatible.

INTERSECTION Produces a relation that includes all the tuples in both R,NR,
R, and R,; R, and R, must be union compatible.

DIFFERENCE Produces a relation that includes all the tuples in R, —R,
R, that are not in Ry; R, and R, must be union
compatible.
CARTESIAN Produces a relation that has the attributes of R, and R XR,
PRODUCT R, and includes as tuples all possible combinations
of tuples from R, and R,.
DIVISION Produces a relation R(X) that includes all tuples [X] R,(Z) + Ry(Y)

in R,(Z) that appear in R, in combination with every
tuple from R,(Y), where Z=X U Y.

Relational Calculus

m Arelational calculus expression creates a new relation, which is specified in terms of variables that range
over rows of the stored database relations (in tuple calculus) or over columns of the stored relations (in
domain calculus).

m In a calculus expression, there is no order of operations to specify how to retrieve the query result—a
calculus expression specifies only what information the result should contain.

m This is the main distinguishing feature between relational algebra and relational calculus.
m Relational calculus is considered to be a nonprocedural language.

m This differs from relational algebra, where we must write a sequence of operations to specify a
retrieval request; hence relational algebra can be considered as a procedural way of stating a

query.

Tuple Relational Calculus
m The tuple relational calculus is based on specifying a number of tuple variables.

m Each tuple variable usually ranges over a particular database relation, meaning that the variable
may take as its value any individual tuple from that relation.

m Asimple tuple relational calculus query is of the form

{t | COND(t)}
0 wheretis atuple variable and COND (t) is a conditional expression involving t.

0 Theresult of such a query is the set of all tuples t that satisfy COND (t).

Example: To find the first and last names of all employees whose salary is above

$50,000, we can write the following tuple calculus expression:

(0]

{t.FNAME, t.LNAME | EMPLOYEE(t) AND t.SALARY>50000}
The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is EMPLOYEE.

The first and last name (PROJECTION pFNAME, LNAME) of each EMPLOYEE tuple t that satisfies
the condition t.SALARY>50000 (SELECTION s SALARY >50000) will be retrieved.

The Existential and Universal Quantifiers

Two special symbols called quantifiers can appear in formulas; these are the universal quantifier (") and
the existential quantifier ($).

Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an (" t) or (S t) clause;
otherwise, it is free.

If Fis a formula, then so are (S t)(F) and (" t)(F), where t is a tuple variable.

m The formula ($ t)(F) is true if the formula F evaluates to true for some (at least one) tuple assigned
to free occurrences of t in F; otherwise (S t)(F) is false.

m The formula (" t)(F) is true if the formula F evaluates to true for every tuple (in the universe)
assigned to free occurrences of t in F; otherwise (" t)(F) is false.

"is called the universal or “for all” quantifier because every tuple in “the universe of” tuples must make F
true to make the quantified formula true.

S is called the existential or “there exists” quantifier because any tuple that exists in “the universe of”
tuples may make F true to make the quantified formula true.

The language SQL is based on tuple calculus. It uses the basic block structure to express the queries in
tuple calculus:

m SELECT <list of attributes>
m FROM <list of relations>
m WHERE <conditions>

SELECT clause mentions the attributes being projected, the FROM clause mentions the relations needed
in the query, and the WHERE clause mentions the selection as well as the join conditions.

SQL syntax is expanded further to accommodate other operations

Another language which is based on tuple calculus is QUEL which actually uses the range variables as in tuple calculus. Its
syntax includes:

RANGE OF <variable name> IS <relation name> Then it uses

RETRIEVE <list of attributes from range variables> WHERE <conditions>

This language was proposed in the relational DBMS INGRES.

The Domain Relational Calculus

Another variation of relational calculus called the domain relational calculus, or simply, domain calculus is
equivalent to tuple calculus and to relational algebra.

The language called QBE (Query-By-Example) that is related to domain calculus was developed almost
concurrently to SQL at IBM Research, Yorktown Heights, New York.

m Domain calculus was thought of as a way to explain what QBE does.
Domain calculus differs from tuple calculus in the type of variables used in formulas:

m Rather than having variables range over tuples, the variables range over single values from
domains of attributes.

To form a relation of degree n for a query result, we must have n of these domain variables— one for
each attribute.

An expression of the domain calculus is of the form

{x1,%x2,...,xn |

COND(x1, x2,

..., XN, Xn+1, xn+2, .. ., xn+m)}

m wherexl, x2,...,xn,xn+l, xn+2, .. ., xn+m are domain variables that range over domains (of
attributes)

m and COND is a condition or formula of the domain relational calculus.

QBE: A Query Language Based on Domain Calculus

m This language is based on the idea of giving an example of a query using example elements.

m An example element stands for a domain variable and is specified as an example value preceded by the
underscore character.

m P. (called P dot) operator (for “print”) is placed in those columns which are requested for the result of the
query.

m A user may initially start giving actual values as examples, but later can get used to providing a minimum
number of variables as example elements.

Relational Database Design Using ER-to-Relational Mapping

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

(Fname C_gg}@ﬂ?
)

tt——

Baate) (Name > (Address) (" Salary
CSen o
\ //

EMPLOYEE [(Startdud <N

DEPENDENTS_OF

EMPLOYEE

| Fname | Minit | Lnamel Ssn | Bdate | Address | Sex | Salary | Super_ssnl Dno |

ﬁll
DEPARTMENT T
| Dname I Dnumber] Mgr_ssnl Mgr_start‘date]

[
DEPT_LOCATIONS
| Dnumber | Diocation |
[

PROJECT

| Pname I Pnumber I Plocation | Dnum
==

WORKS_ON

| Essn | Pno | Hours |
[I

DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship
|

ER-to-Relational Mapping Algorithm

Figure 9.2

Result of mapping the
COMPANY ER schema
into a relational database
schema

COMPANY database example
Assume that the mapping will create tables with simple single-valued attributes
Step 1: Mapping of Regular Entity Types

For each regular entity type, create a relation R that includes all the simple attributes of E Called entity relations . Each
tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types

For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R .
Include primary key attribute of owner as foreign key attributes of R

Step 3: Mapping of Binary 1:1 Relationship Types

For each binary 1:1 relationship type . Identify relations that correspond to entity types participating in R . Possible
approaches: Foreign key approach. Merged relationship approach.Crossreference or relationship relation approach

Step 4: Mapping of Binary 1:N Relationship Types.

For each regular binary 1:N relationship type. Identify relation that represents participating entity type at N-side of
relationship type . Include primary key of other entity type as foreign key in S . Include simple attributes of 1:N
relationship type as attributes of S

Alternative approach e Use the relationship relation (cross-reference) option as in the third option for binary 1:1
relationships

Step 5: Mapping of Binary M:N Relationship Types . For each binary M:N relationship type.Create a new relation S.
Include primary key of participating entity types as foreign key attributes in S. Include any simple attributes of M:N
relationship type

Step 6: Mapping of Multivalued Attributes

For each multivalued attribute ,Create a new relation .Primary key of R is the combination of A and K. If the multivalued
attribute is composite, include its simple components

Step 7: Mapping of N-ary Relationship Types
For each n-ary relationship type R, Create a new relation S to represent R

*Include primary keys of participating entity types as foreign keys

Figure 9.3 (a) EMPLOYEE

Ir::strahon o Bome I Fname I Minit I Lname I Ssn | Bdate ’ Address | Sex | Salary |
pping steps.

a Entity relations after

DEPARTMENT
step 1.
b. Additional weak entity [Dname] Dnumber ‘
relation after step 2.
c. Relationship relation PROJECT
after step 5. I Pname l Pnumber l Plocation l

d. Relation representing

multivalued attribute
after step 6. (b) DEPENDENT

I Essn | Dependent_name | Sex] Bdate | Relationship

(c) WORKS_ON

IEsilF’n_olHoursl

(d) DEPT_LOCATIONS

I Dnumber | Dlocation |

*nclude any simple attributes as attributes

Table 9.1 Correspondence between ER and Relational Models

ERMODEL RELATIONAL MODEL
Entity type Entity relation
1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute
Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key
Value set Domain
Key attribute Primary (or secondary) key

Basic SQL

& SQL language #
Considered one of the major reasons for the commercial success of relational databases SQL -Structured Query Language

Statements for data definitions, queries, and updates (both DDL and DML)

SQL Data Definition and Data Types Terminology:

Table, row, and column used for relational model terms relation, tuple, and attribute

CREATE statement - Main SQL command for data definition SQL schema - Identified by a schema name
Includes an authorization identifier and descriptors for each element

Schema elements include - Tables, constraints, views, domains, and other constructs. Each statement in SQL ends with a
semicolon.

CREATE SCHEMA statement
e.g ; CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;
Specify a new relation Provide name

Specify attributes and initial constraints. Can optionally specify schema:

CREATE TABLE COMPANY.EMPLOYEE ... or CREATE TABLE EMPLOYEE...
The CREATE TABLE Command in SQL

Base tables (base relations) Relation and its tuples are actually created and stored as a file by the DBMS Virtual relations.
Created through the CREATE VIEW statement

Attribute Data Types and Domains in SQL Basic data types
e Numeric data types
e Integer numbers: INTEGER, INT, and SMALLINT

e Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION

Character-string data types ¢ Fixed length: CHAR(n), CHARACTER(n) e Varying length: VARCHAR(n), CHAR
VARYING (n), CHARACTER VARYING(n)

Bit-string data types e Fixed length: BIT(n) e Varying length: BIT VARYING(n)
Boolean data type ¢ Values of TRUE or FALSE or NULL

DATE data type ® Ten positions ® Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD

® The SELECT-FROM-WHERE Structure of SQL Queries SELECT <attributes>

FROM <table> WHERE<condition>

EXAMPLES

QUERY Retrieve the birthdate and address of the employee(s) whose name is ‘John B. Smith’

SELECT BDATE, ADDRESS FROM EMPLOYEE WHERE FNAME="John” AND MINIT=B" AND LNAME=‘Smith’;

QUERY Retrieve the name and address of all employees who work for the ‘Research’ department.

SELECT FNAME, LNAME, ADDRESSA FROM EMPLOYEE, DEPARTMENT WHERE DNAME=‘Research” AND DNUMBER=DNO;

Unspecified WHERE-Clause and Use of Asterisk (*)

SELECT * FROM EMPLOYEE WHERE DNO=5;

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE DNAME=‘Research’ AND DNO=DNUMBER;

QUERY Select all combinations of EMPLOYEE SSN and DEPARTMENT DNAME in the database.

SELECT * FROM EMPLOYEE, DEPARTMENT;

Tables as Sets in SQL QUERY

Retrieve the salary of every employee and all distinct salary values.

SELECT ALL SALARY FROM EMPLOYEE; SELECT DISTINCT SALARYA FROM EMPLOYEE;

Substring Comparisons, Arithmetic Operators, and Ordering

QUERY:Retrieve all employees whose address is in Houston, Texas.

SELECT FNAME, LNAME FROM EMPLOYEE WHERE ADDRESS LIKE

‘%Houston, TX%’;

QUERY Find all employees who were born during the 1950s.

SELECT FNAME, LNAMEA FROM EMPLOYEE WHERE BDATE LIKE'_ _ 5 ’;

QUERY Retrieve all employees in department 5 whose salary is between $30,000 and $40,000. SELECT *FROM
EMPLOYEE WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO =5;

QUERY Retrieve a list of employees and the projects they are working on, ordered by department and, within each
department, ordered alphabetically by last name, first name.

SELECT DNAME, LNAME, FNAME, PNAMEA FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT WHERE
DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER ORDER BY DNAME, LNAME, FNAME;

Explicit Sets and NULLS in SQL

QUERY Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.

SELECT DISTINCT ESSNA FROM WORKS_ON WHERE PNO IN (1, 2, 3);

QUERY Retrieve the names of all employees who do not have supervisors. SELECT FNAME, LNAME FROM EMPLOYEE
WHERE SUPERSSN IS NULL;

Renaming Attributes and Joined Tables

QUERY For each employee, retrieve the employee’s first and last name and the first and last name of his or her
immediate supervisor. S

ELECT E.LNAME AS EMPLOYEE_NAME, S.LNAME AS SUPERVISOR_NAME FROM EMPLOYEE AS E, EMPLOYEE AS S WHERE
E.SUPERSSN=S.SSN;

Aggregate Functions and Grouping

QUERY
Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY),A AVG (SALARY) FROM EMPLOYEE;

QUERY

Find the sum of the salaries of all employees of the ‘Research’ department, as well as the maximum salary, the minimum
salary, and the average salary in this department.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY) FROM EMPLOYEE, DEPARTMENT WHERE
DNO=DNUMBER AND DNAME=‘Research’;

QUERY

Count the number of distinct salary values in the database. SELECT COUNT (DISTINCT SALARY) FROM EMPLOYEE;

SELECT LNAME, FNAME FROM EMPLOYEE WHERE (SELECT COUNT (*) FROM DEPENDENT WHERE SSN=ESSN) >= 2;

For each project on which more than two employees work, retrieve the project number, the
project name, and the number of employees who work on the project.

SELECT PNUMBER, PNAME, COUNT (*)A FROM PROJECT, WORKS_ON WHERE PNUMBER=PNO GROUP BY PNUMBER,
PNAME HAVING COUNT (*) > 2;

Insert, Delete, and Update Statements in SQL

INSERT COMMAND

INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’ ‘1962-12-30",°98 Oak Forest,Katy,TX’, ‘M’, 37000,
‘987654321’, 4);

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO) VALUES (‘Robert’, ‘Hatcher’, 5);

CREATE TABLE DEPTS_INFO (DEPT_NAME VARCHAR(15), NO_OF_EMPS INTEGER, TOTAL_SAL INTEGER); INSERT INTO
DEPTS_INFO (DEPT_NAME,A NO_OF_EMPS, TOTAL_SAL) SELECT DNAME, COUNT (*), SUM (SALARY) FROM
(DEPARTMENT JOIN EMPLOYEE ON DNUMBER=DNO) GROUP BY DNAME;

DELETE COMMAND

DELETE FROM EMPLOYEE WHERE LNAME='Brown’; DELETE FROM EMPLOYEE WHERE SSN=123456789’;

The UPDATE Command

UPDATE PROJECT SET PLOCATION = ‘Bellaire’, DNUM =5 WHERE PNUMBER=10;

Module 3: SQL DML (Data Manipulation Language), Physical Data Organization

SQL DML (Data Manipulation Language) - SQL queries on single and multiple tables, Nested queries (correlated and
non-correlated), Aggregation and grouping, Views, assertions, Triggers, SQL data types. Physical Data Organization -
Review of terms: physical and logical records, blocking factor, pinned and unpinned organization. Heap files, Indexing,
Singe level indices, numerical examples, Multi-level-indices, numerical examples, B-Trees & B+-Trees (structure only,

algorithms not required), Extendible Hashing, Indexing on multiple keys — grid files.
What is relational database design?
The grouping of attributes to form "good" relation schemas

- Two levels of relation schemas:
- The logical "user view" level
- The storage "base relation" level
- Normalization is concerned mainly with base relations

Criteria for ""good' base relations

1.1Semantics of the Relation Attributes

GUIDELINE 1: Informally, each tuple should represent one entity or relationship instance.

- Attributes of different entities (EMPLOYEEs, DEPARTMENTS, PROJECTS) should not be mixed in the
same relation

- Only foreign keys should be used to refer to other entities

- Entity and relationship attributes should be kept apart as much as possible.

Bottom Line: Design a schema that can be explained easily relation by relation. The semantics of attributes

should be easy to interpret.

1.2Redundant Information in Tuples and Update Anomalies

- Mixing attributes of multiple entities may cause problems

- Information is stored redundantly wasting storage
- Problems with update anomalies:

- Insertion anomalies

- Deletion anomalies

- Modification anomalies

GUIDELINE 2: Design a schema that does not suffer from the insertion, deletion and update anomalies. If there

are any present, then note them so that applications can be made to take them into account.

1.3Null Values in Tuples

GUIDELINE 3: Relations should be designed such that their tuples will have as few NULL values as possible

- Attributes that are NULL frequently could be placed in separate relations (with the primary key)

-Reasons for nulls:
a.attribute not applicable or invalid
b. attribute value unknown (may exist)

c.value known to exist, but unavailable

1.4Spurious Tuples

- Bad designs for a relational database may result in erroneous results for certain JOIN operations

- The "lossless join" property is used to guarantee meaningful results for join operations

GUIDELINE 4: The relations should be designed to satisfy the lossless join condition. No spurious tuples

should be generated by doing a natural-join of any relations.

Functional Dependencies

Functional dependencies (FDs) are used to specify formal measures of the "goodness” of relational designs

FDs and keys are used to define normal forms for relations
- FDs are constraints that are derived from the meaning and interrelationships of the data attributes
- Aset of attributes X functionally determines a set of attributes Y if the value of X determines

a unique value for Y X -> Y in R specifies a constraint on all relation instances r(R)

- For any two tuples t1 and t5 in any relation instance r(R):

If tl[X]th[X], then tl[Y]th[Y]

- X ->Y holds if whenever two tuples have the same value for X, they must have the same value for Y

FDs are derived from the real-world constraints on

the attributes An FD is a property of the attributes in the

schema R
- The constraint must hold on every relation instance r(R)

- If Kisakey of R, then K functionally determines all attributes in R (since we never have two distinct tuples
with t1[K]=to[K])

Armstrong's inference rules:
Al. (Reflexive) If Y subset-of X, then X ->Y
A2. (Augmentation) If X -> Y, then XZ ->YZ
(Notation: XZ stands for X U Z)
A3. (Transitive) If X ->Y and Y -> Z, then X -> Z
- Al, A2, A3 form a sound and complete set of inference rules

Some additional inference rules that are useful:
(Decomposition) If X ->YZ, then X -> Y and X -> Z
(Union) If X -> Y and X -> Z, then X -> YZ
(Psuedotransitivity) If X ->Y and WY -> Z, then WX ->
z

The last three inference rules, as well as any other inference rules, can be deduced from Al, A2, and A3

(completeness property)
CLOSURE

alosure of a set F of FDs is the setF of all FDs that can be inferred from F

+
- Closure of a set of attributes X with respect to F is the set X of all attributes that are functionally

-)%;tgﬁﬁﬁPe% calculated by repeatedly applying A1, A2, A3 using

by X
Equivalence of Sets of FDs
- Two sets of FDs F and G are equivalent if: every FD in F can be inferred from G, and every FD in G can
be
+ +

inferred from F. Hence, F and G are equivalent if F =G
+

- Definition: F covers G if every FD in G can be inferred from F (i.e., if G subset-ofF

- Fand G are equivalent if F covers G and G covers F

- There is an algorithm for checking equivalence of sets of FDs

Minimal Sets of FDs

A set of FDs is minimal if it satisfies the following conditions:

(1) Every dependency in F has a single attribute for its RHS.

(2) We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.

(3) We cannot replace any dependency X -> A in F with a dependency Y -> A, where Y proper-subset-of X
and still have a set of dependencies that is equivalent to F.

Every set of FDs has an equivalent minimal set

There can be several equivalent minimal sets

There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs

Having a minimal set is important for some relational design algorithms

Normalization: Process of decomposing unsatisfactory "bad" relations by breaking up their attributes into

smaller relations

Normal form: Condition using keys and FDs of a relation to certify whether a relation schema is in a
particular normal form

2NF, 3NF, BCNF based on keys and FDs of a relation schema

4NF based on keys, MVDs; 5NF based on keys,

-Additional properties may be needed to ensure a good relational design (lossless join, dependency preservation;

The purpose of normalizing data

When we design a database for a relational system, the main objective in developing a logical data model

is to create an accurate representation of the data, its relationships and constraints. To achieve this

objective, we must identify a suitable set of relations. A technique that we can use to help identify such

relations is called normalization. Normalization is a technique for producing a set of relations with

desirable properties, given the data requirements of an enterprise. Normalization supports database

designers by presenting a series of tests, which can be applied to individual relations so that a relational

schema can be normalized to a specific form to prevent the possible occurrence of update anomalies.

FIRST NORMAL FORM

First normal form (1NF) is now considered to be part of the formal definition of a relation in the basic
(flat) relational model. It states that:

1. The domain of an attribute must include only atomic (simple, indivisible) values and

2. That the value of any attribute in a tuple must be a single value from the domain of that attribute.
Hence, INF disallows having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. In other words, 1NF disallows relations within relations or relations as attribute

values within tuples. The only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema, whose primary key is Dnumber, and suppose that we
extend it by including the Dlocations attribute. Assuming each department can have a number of
locations. This is not in INF because Dlocations is not an atomic attribute

SECOND NORMAL FORM

Second normal form (2NF) is based on the concept of full functional dependency. Functional
Dependency: The attribute B is fully functionally dependent on the attribute A if each value of A
determines one and only one value of B.

Example: PROJ_NUM, PROJ_NAME In this case, the attribute PROJ_NUM is known as the determinant
attribute and the attribute PROJ_NAME is known as the dependent attribute.

Generalized Definition: Attribute A determines attribute B (that is B is functionally dependent on A) if

all of the rows in the table that agree in value for attribute A also agree in value for attribute B. Fully
functional dependency (composite key) If attribute B is functionally dependent on a composite key A but
not on any subset of that composite key, the attribute B is fully functionally dependent on A. Partial
Dependency: When there is a functional dependence in which the determinant is only part of the

primary key, then there is a partial dependency. For example if (A, B) ¢ (C, D) and B¢ C and (A, B) is the primary key,
then the functional dependence BOC is a partial dependency. {Ssn, Pnumber} —Hours is a full dependency (neither Ssn

— Hours nor Pnumber—Hours holds). However, the dependency {Ssn, Pnumber}—Ename is partial because
Ssn—Ename holds.

Module 4: Normalization

Different anomalies in designing a database, The idea of normalization, Functional dependency, Armstrong’s Axioms (proofs
not required), Closures and their computation, Equivalence of Functional Dependencies (FD), Minimal Cover (proofs not
required). First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF), Boyce Codd Normal Form

(BCNF), Lossless join and dependency preserving decomposition, Algorithms for checking Lossless Join (LJ) and Dependency
Preserving (DP) properties.

normalization

Normalization is the process of organizing the data in thedatabase

It is used to minimize the redundancy from a relation or setof relations

It is also used to eliminate the insertion anomaly,updateanomaly and deletion anomaly
It divides the larger table into the smaller table and linksthem using relationship

Update anomalies
Deletion anomalieslnsert
anomalies

emp i1d emp name emp address emp dept

101 Rick Delhi D001
101 Rick Delhi D002
123 Maggie Agra D890

166 Glenn Chennai D900
166 Glenn Chennai D004

Functional dependency
« A functional dependency is an association between twoattributes of the same
relational database table.

« One of the attributes is called the determinant and the otherattribute is called the determined

« If A'is the determinant and B is the determined then we saythat A functionally determines B
and graphically represent this as A -> B

The following table illustrates that A does not functionally determine B:

The following table illustrates A ——— > B:

A

1
2
3
4
2
7

1
4
9

16

i
1 1
2 4
3 9
4 16
3 10

Armstrong’s AXioms

* Armstrong’s Axiom is a mathematical notation used to findthe functional dependencies in

a database.

 Conceived by William W. Armstrong

« Itis a list of axioms or inference rules that can beimplemented on any

relational database.

* It is denoted by the symbol F+.

Various Axioms Rules

A. Primary Rule

Rule |Reflexivity
1 If A is a set of attributes and B is a subset of A, then A holds B. { A —
B}
Rule |Augmentation
2 If A hold B and C is a set of attributes, then AC holds BC. {AC — BC}
It means that attribute in dependencies does not change the basic
dependencies.
Rule |Transitivity
3 If A holds B and B holds C, then A holds C.
If {A — B} and {B — C}, then {A — C}
A holds B {A — B} means that A functionally determines B.

B. Secondary Rules

Rule 1 Union
If A holds B and A holds C, then A holds BC.
If{A — B} and {A — C}, then {A — BC}
Rule 2 Decomposition
If A holds BC and A holds B, then A holds C.
If{A — BC} and {A — B}, then {A — C}
Rule 3 Pseudo Transitivity

If A holds B and BC holds D, then AC holds D.
If{A — B} and {BC — D}, then {AC — D}

Closure Of Functional Dependency

« The Closure Of Functional Dependency means the complete set of all possible attributes that
can be functionallyderived from given functional dependency

e If “F” is a functional dependency then closure of functional dependency can be denoted using
“{F}+ ,’.

e There are three steps to calculate closure of functional dependency

Step-1 : Add the attributes which are present on Left Hand Side in the original functional
dependency.

Step-2 : Now, add the attributes present on the Right Hand Side of the functional dependency.

Step-3 : With the help of attributes present on Right Hand Side, check the other attributes that
can be derived from the other given functional dependencies. Repeat this process until all the
possible attributes whichcan be derived are added in the closure.

Example:

Consider the table student_details having (Roll_No, Name,Marks, Location) as theattributes and having
two functional dependencies.

FDL1 : Roll_No -> Name, Marks FD2 :
Name -> Marks, Location

Step-1: {Roll_no}+ = {Roll_No}
Step-2 : {Roll_no}+ ={Roll_No,Name, Marks}

Step-3 : {Roll_no}+ = {Roll_No, Marks, Name, Location}

Step-1: {Name}+ = {Name}
Step-2 : {Name}+ = {Name, Marks, Location}

Step-3 : Since, we don’t have any functional dependency where “Marks or Location”.So {Name}+ =
{Name, Marks, Location}

{Marks}+ = {Marks} and {Location}+ = { Location}

Equivalence of Functional Dependencies (FD)

« Two different sets of functional dependencies for a given relation mayor may not be
equivalent.

e If FD1 can be derived from FD2, we can say that FD2 = FDL1.

e If FD2 can be derived from FD1, we can say that FD1 = FD2.
e If above two cases are true, FD1=FD2.

Eg:A relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D} and FD2 = {A->B, B->C, A->C,
A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

e A->B YES

e B->C YES

e AB->D YES For set FD2, (AB)+ =

{A,B,C,D}.FD2 = FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

e A->B YES

e B->C YES

e A->C YES Forset FD1, (A)+ ={A,B,C,D}.

e A->D YES For set FD1, (A)+ =

{AB,C,D}FD1 = FD2 is true.

Step 3. As FD2 =» FD1 and FD1 = FD2 both are true FD2 =FD1 is true. These two FD sets are semantically
equivalent.

Minimal Cover

* Whenever a user updates the database, the system must check whether any of the functional
dependencies are getting violated in this process. If there is a violation of dependencies in the new
database state, the system must roll back. Working with a huge set of functional dependencies can
cause unnecessary added computational time. This is where the minimal cover comes into play.

There are 4 rules to find Minimal cover :

1. Break down the RHS of each functional dependency into a single attribute

2. Find redundant fds

3. Minimize LHS.

4. Group the functional dependencies that have common LHS together into a SingleFD .

Q1. Minimal cover of F with dependencies F={BC->ADEF, F->DE} ?

STEP 1: Break down the RHS
BC->A BC->D BC->E BC->F F->D F->E

STEP 2: Find redundant fds

® Assume BC->A is redundant fd and we remove this fd,now try computing
(BC)+={BCDEF} but there is no A. so BC->A is not redundant

eBC->D (BC)+={BCAEFD}, D is present so BC->D is redundant

e BC->E (BC)+={BCADFE}, E is present so BC->E is redundant

® BC->F (BC)+={BCADE}, F is not present so BC->F is not redundantso we
get

BC->A BC->F F->D F->E

BC->A BC->F F->D F->E

STEP 3: Minimize LHS

BC->A BC->F

® From BC-> A, if we remove B and then we get C->A. By taking closure (C)+={C,A},

there is no B. same way remove C then B->A. By taking closurethere is no C. So it can’t

be minimize

® BC->F it also can’t be minimizeso

we get

BC->A BC->F F->D F->E

Step 4: Group the functional dependencies that have common LHS togetherinto a Single FD .
so the minimal cover is

BC->AF F->DE

index

U First Normal Form (INF)

[second Normal Form (2NF)

U Third Normal Form (3NF)

a Boyce Codd Normal Form (BCNF)

normalization

» Normalization is the process of organizing the data in thedatabase

* It is used to minimize the redundancy from a relation or setof relations

« It is also used to eliminate the insertion anomaly,updateanomaly and deletion anomaly
« It divides the larger table into the smaller table and linksthem using relationship

Normal Forms

First Normal Form (INF)

« A relation will be INF if it contains an atomic value.

« It states that an attribute of a table cannot hold multiplevalues. It must hold only single-
valued attribute.

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385, up
9064738238
20 Harry 8574783832 Bihar
12 Sam 7390372389, Punjab
8589830302
EMP_ID EMP_NAME EMP_PHONE EMP_STATE
14 John 7272826385 up
14 John 9064738238 up
20 Harry 8574783832 Bihar
12 Sam 7390372389 Punjab
12 Sam 8589830302 Punjab

Second Normal Form (2NF)

» Inthe 2NF, relational must be in INF.

« In the second normal form, No non-prime attribute is dependent onthe proper subset of any
candidate key of table

Non-prime attribute: An attribute that is not a part of any candidatekey

TEACHER ID SUBJECT TEACHER _AGE

25 Chemistry 30
25 Biology 30
47 English 35
83 Math 38
a3 Computer 38
TEACHER ID TEACHER AGE TEACHER_ID SUBJECT
25 Chemistry
& A 25 Biology
4 35 47 English
832 Math
8 38
83 Computer

Third Normal Form (3NF)

« In 3NF,the relation must be in 2NF
« Transitive functional dependency of non-prime attribute on any superkey should be removed

Transitive functional dependency: A->B & B->C ,THEN A->C

EMP_ID EMP_NAME

222 Harry

Super key in the table above:

333 Stephan

{EMP_ID}, {EMP_ID, EMP_NAME}, .,
{EMP_I D, EMP_NAME, EMP_ZIP}. so

555 Katharine
on
666 John
Candidate key: {EMP_ID}
Non-prime attributes: In the given
table,all attributes except EMP_ID are non-
prime
EMP _ID EMP NAME EMP_ZIP EAP_ZIP
222 Harry 201010 201010
333 Stephan 02228 02228
444 Lan 60007 60007
555 Katharine 06389 06389
666 John 462007 462007

Boyce Codd Normal Form (BCNF)

 BCNF is the advance version of 3NF.

« A table is in BCNF if every functional dependency X C Y, X is

the super key of the table.

EMP_ID EMP_COUNTRY

In the above table Functional 2% India
dependencies are as follows: 1LEMP_ID -
C EMP_COUNTRY
364 UK
364 UK

EMP_CITY
Noida
Boston
Chicago
Norwich

Bhopal

EMP_CITY
Noida
Boston
Chicago
Norwich

Bhopal

DEPT TYPE EMP DEPT NO

EMP_ZIP EMP_STATE
201010 up
02228 us
60007 us
06389 UK
462007 MP
EMP_STATE
upP
us
us
UK
MP
EMP_DEPT
Designing D394
Testing D394
Stores D283
Developing D283

283

300

232

549

2.EMP_DEPT C
DEPT_NO}

EMP ID

264

264

{DEPT_TYPE, EMP_

EMP COUNTRY

India

India

EMP_DEPT

Designing
Testing
Stores

Developing

Candidate key: {EMP-ID, EMP-DEPT}

index

L Lossless join and dependency preserving decomposition

| Algorithms for checking Lossless Join (LJ)

DEPT TYPE

D394
D394
D283

D283

EMP_DEPT NO

283
300
232

549

EMP ID

D39%4
D394
D283

D283

EMP_DEPT

283
300
232

549

Lossless joinand dependency preservingdecomposition

» Decomposition of a relation is done when a relation in relational model is not in appropriate
normal form.

* Relation R is decomposed into two or more relations if decomposition is lossless join as well as
dependency preserving.

Lossless Join Decomposition

« If the information is not lost from the relation that is decomposed, then thedecomposition
will be lossless.

« ie, the relation is said to be lossless decomposition if natural joins of all thedecomposition
give the original relation.

« If we decompose a relation R into relations R1 and R2

1. Decomposition is lossy if R1 e R2 is not R

2. Decomposition is lossless if R1 e R2 is equal to R

EMPLOYEE DEPARTMENT table:

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing
46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production
60 Jack 40 Noida 678 Testing

¥

22 Denim 28 Mumbai 907 2 Sales

33 Alina 25 Delhi 438 3 Marketing

46 Stephan 30 Bangalore 269 26 Finance

52 Katherine 36 Mumbai 575 53 Production

60 Jack 40 Noida 578 50 Testing
Employee Department

Dependency Preserving Decomposition

® The dependency preservation property, which ensures that each functional dependency
is represented in some individual relationresulting after decomposition

® In the dependency preservation, at least one decomposed table must

Algorithms for checking Lossless Join (LJ)

R(A,B,C,D,E)
F:{A->B, BC->E, ED->A}

R is decomposed into R1(AB) and R2(ACDE)
Step 1 — Create a table with M rows and N columns

®* M= number of decomposed relations.
* N=number of attributes of original relation.

R1 A B C

R2

Step 2 — If a decomposed relation Ri has attribute A thenlnsert a symbol

(say “a’) at position (Ri,A)

R1 A B

R2

&
https:/Avww.kerafanerala cdes/

Step 3 — Consider each FD X->Y

If column X has two or more symbols then

Insert symbols in the same place (rows) of column Y.

Now let us insert symbol ‘a’ for A->B in second column, second row

R1 A B C D E

a a

a a a a a
R2

Step 4 — If any row is completely filled with symbols then

Decomposition is lossless.

Else R2 is completely filled => decomposition is lossless.

Decomposition is lossy.

Module 5: Transactions, Concurrency and Recovery, Recent Topics

For More Study Materials : https://www.keralanotes.com/

http://www.keralanotes.com/
http://www.keralanotes.com/

"
https:/www. kerafanexala ades/

Transaction Processing Concepts - overview of concurrency control, Transaction Model, Significance of concurrency
Control & Recovery, Transaction States, System Log, Desirable Properties of transactions. Serial schedules, Concurrent
and Serializable Schedules, Conflict equivalence and conflict serializability, Recoverable and cascade-less schedules,
Locking, Two-phase locking and its variations. Log-based recovery, Deferred database modification, check-pointing.
Introduction to NoSQL Databases, Main characteristics of Key-value DB (examples from: Redis), Document DB
(examples from: MongoDB) Main characteristics of Column - Family DB (examples from: Cassandra) and Graph DB
(examples from : ArangoDB)

transact
i0n

« Transactions group a set of tasks into a single
execution unit.

« Each transaction begins with a specific task and
endswhen all the tasks in the group successfully
complete.

« If any of the tasks fail, the transaction fails.
Therefore, a transaction has only two results:
successor failure.

* Incomplete steps result in the failure of the
transaction.

A database transaction, by definition, must be

For More Study Materials : https://www.keralanotes.com/

http://www.keralanotes.com/
http://www.keralanotes.com/

hitps: /. ker B O SoRy

ACID Properties in DBMS

The entire transaction takes place at once
or doesn't happen at all.

A = Atomicity

The database must be consistent before
—>| C = Consistency|——>)
and after the transaction.

ACID'—

f ; :
|_,[T= isolation] Multiple Tran.sactlo.ns occur independently
without interference.

_>J5’= Durabiiity The changes.of a successful' transaction
occurs even if the system failure occurs.

CONCURRENCY CONTROL

Concurrency Control in Database Management System
is a procedure of managing simultaneous operations
without conflicting with each other

O Concurrency Control Protocols
» Lock-Based Protocols

« Two Phase Locking Protocol

« Timestamp-Based Protocols

+ Validation-Based Protocols

For More Study Materials : https://lwww.keralanotes.com/

http://www.keralanotes.com/
http://www.keralanotes.com/

1.LOCK-BASED PROTOCOLS

* Lock Based Protocols in DBMS is a mechanism in which a
transaction cannot Read or Write the data until it acquires an
appropriate lock.

» Lock based protocols help to eliminate the concurrency problem
in DBMS for simultaneous transactions by locking or isolating a
particulartransaction to a single user.

« All lock requests are made to the concurrency-control
manager. Transactions proceed only once the lock request is
granted.

TWO PHASE LOCKING PROTOCOL (2 PL Protocol)

* It is a method of concurrency control in DBMS that ensures serializability by
applying alock to the transaction data which blocks other transactions to
access the same data simultaneously

Growing Phase: In this phase transaction may
obtain locks but may not release any locks.

Shrinking Phase: In this phase, a transaction
may release locks but not obtain any new lock

Start Operations End

Locked
Growing phase phase Shrinking phase
> | >

v

TIMESTAMP-BASED PROTOCOLS

* It is an algorithm which uses the System Time or Logical
Counter as atimestamp to serialize the execution of
concurrent transactions.
« It ensuresthat every conflicting read and write operations
areexecuted in a timestamp order.
« The older transaction is always given priority in this method.
* ltuses system time to determine the time stamp of the transaction.
« This is the most commonly used concurrency protocol.

VALIDATION BASED PROTOCOL

« ltis also called Optimistic Concurrency Control Technique.

* It is called optimistic because of the assumption it makes, i.e. very less
interference occurs, therefore, there is no need for checking while the
transaction is executed.

« Until the transaction end is reached updates in the transaction are not applied
directly to the database. All updates are applied to local copies of data items
kept for the transaction. At the end of transaction execution, while execution
of the transaction, a validation phase checks whether any of transaction
updates violate serializability. If there is no violation of serializability the
transaction is committed and the database is updated

Transaction Model

Transactions access data using two operations:

e read(X), which transfers the data item X from the
database to a variable, also called X, in a buffer in
mainmemory belonging to the transaction that
executed theread operation.

e write(X), which transfers the value in the variable
X inthe main-memory buffer of the transaction that
executed the write to the data item X in the
database.

Partially Committed
State

Read /Write
operations

Committed State
Permanent

Store

- - —-nsaction States

« Active State:When the instructions
of the transaction are running then
the transaction is in active state. If all
the ‘read and write’ operations are
performed without any error then it
goes to the “partially committed
state”; if any instruction fails, it goes
to the “failed state”.

« Partially Committed:After completion of all the read and write operation the
changes are made in main memory or local buffer. If the the changes are made
permanent on the DataBase then the state will change to “committed state” and
in case of failure it will go to the“failed state”.

« Failed State:When any instruction of the transaction fails, it goes to the “failed
state”

Active State

Failure

Terminated State

Failure

Roll Back

Failed State Aborted State

Transaction States in DEMS

Partially Committed
State

Committed State
Permanent

Store

Read /Write
operations

« Aborted State :After having any type

of failure the transaction goes from
“failed state” to “aborted state”

Active State Failure

Failure

Roll Back

Failed State Aborted State

Transaction States in DBMS

« Committed State:lt is the state when the changes are made permanent
on the Data Base and the transaction is complete and therefore terminated
in the “terminated state”.

 Terminated State :the transaction comes from the “‘committed state”
goes to this state, then the system is consistent and ready for new
transaction and the old transaction is terminated.

System
Log

* Log is asequence of records, which maintains the records of actions
performed bya transaction.

« It is important that the logs are written prior to the actual
modification andstored on a stable storage media, which is failsafe.

Log-based recovery works as follows -

* The log file is kept on a stable storage media.
* When a transaction enters the system and starts execution, it writes a log about it.
e <Tn, Start>

* When the transaction modifies an item X, it write logs as <Tn, X, V1,
V2>.1t readsTn has changed the value of X, from V1 to V2.

* When the transaction finishes, it logs <Tn, commit>

index

A Schedules

dConflict equivalence

dRecoverable and cascade-less schedules
dDeferred database modification
dcheck-pointing

schedule

* Aseries of operation from one transaction to another
transaction isknown as schedule.

* Itis used to preserve the order of the operation in each
of theindividual transaction.

Schedule

Serial Non-serial Serializable
Schedule Schedule Schedule

SERIAL SCHEDULE

* The serial schedule is a type of schedule where one transaction is
executedcompletely before starting another transaction.

 In the serial schedule, when the first transaction completes its
cycle, thenthe next transaction is executed.

(b)
(@)
T1 T2
T1 T2
read(A); ’:.ag(:\'\z: M:
A:=A-N; v
write(A); write(A);
read(B);
Time B:=B+N; e read(A);
write(B); A:=A-N;
write(A):
read(A); read(B);
A:=A+M; B:=B +N;
write(A); write(B):
Schedule A
Schedule B

* If interleaving of operations is allowed, then there will be non-
serialschedule.

* It contains many possible orders in which the system can
execute theindividual operations of the transactions.

A (@
T1 T2 T T
r-::a:d (3{\1: N- read(A);
N - A:=A-N;
.r-\E af E—;\ l M; write(A);
write(A); Rea:dgxl, .
Time read(B); . wﬁte(A) .
write(A); ;
B:=B + N; Time read(B);
¥ | write(B); E;i?e}é];)-y:
Schedule C

Schedule D

Serializable schedule

» The serializability of schedules is used to find non-
serial schedules that allow the transaction to execute
concurrently without interfering with one another.

» It identifies which schedules are correct when
executions of the transaction have interleaving of
their operations.

» A non-serial schedule will be serializable if its result
is equal to the result of its transactions executed
serially.

SERIALIZABILITY is a concept that helps us to check which
schedules are serializable.

Conflict equivalence

Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.
2. If each pair of conflict operations are ordered in the same way.

Non-serial schedule Serial Schedule
a 12 T T2
Read(A)
Write(A) Read(A)
Write(A)
Read(A) Rvez.id(B)
Write(A) Write(B)
Read(B) Read(A)
Write(B) Write(A)
Read(B) Read(B)
Write(B) Write(B)

Schedule S1 Schedule S2

Recoverable Schedule

A recoverable schedule is one where, for each pair of Transaction

T, and T;such that T; reads data item previously written

by T; the commit operation ofT; appears before the commit

operation T;.

T9is dependent on T8

Mon recoverable schedule if T9 commits before T3

ess schedules

Schedule based on Recoverability

action
int T10
2 rolled

T8 T9
read(A)
write(A)
read(A)
read(B)
T10 T11 T12
read(A) |
read(B)
write(A)
read(A)
write(A)
Transas
T11 wri
fails. T1
back, T
This ph

Recoverable

v
Cascadeless

transaction rollbacks is called Cascading rollback.

|

stric?f

* Restrict the schedules to those where cascading rollbacks cannot
occur, Such schedules are called Cascadeless Schedules.

* A cascadeless schedule is one where for each pair of transaction T; and T;
suchthat T; reads data item, previously written by T; the commit
operationof T,appears before the read operation of T,

» Every Cascadeless schedule is also recoverable schedule.

T10 T11
read(A)
write(A)

read(B)
commit

read(A)

Deferred database modification

« The deferred modification technique occurs if the
transaction does not modify the database until it has
committed.

* le, the changes are not applied immediately to the
database.
 In this method, all the logs are created and stored in the

stable storage, and the database is updated when a
transaction commits.

If database modifications occur while the transaction is still
active, the transaction is said to use the immediate-modification
technique.

check-pointing

 The methodology utilized for removing all previous transaction
logs and storing them in permanent storage is called a
Checkpoint.

» A checkpoint is used for recovery if there is an unexpected
shutdown inthe database.

» Checkpoints work on some intervals and write all dirty pages
(modifiedpages) from logs relay to data file from i.e from a buffer
to physical disk. It is also known as the hardening of dirty
pages

* |t speeds up data recovery process.

Create table employee (id,name, place,designation,salary)

te table employee(id int,name varchar(20),place varchar(20),designation varchar(20),salary int);
insert into employee values(161,'anu’, 'manathana’,'clerk’',20000);

ployee values(182,'vinu', "kannur', 'staff',15000);

manathana | clerk
kannup staff
initt,

cashier

tfannur \agenr
mattannur manager

Begin transaction by deleting the details of employ with id 102 and laterrollback the changes

where id=102;

anu
ammu

ct * from

place

mana
vinu kann

ammu

dein

Begin transaction by updating salary(increment by 10%) and commitchanges being made

\ .
/)

manathana

vinu | kannup

ammu

dein nnur | manager

use save point in the transaction

mattannur
manathana

vepoint

insert into

index

ANoSQL Databases
v'Key-value DB (examples from: Redis)
v'Document DB (examples from: MongoDB)

v Column - Family DB (examples
from:Cassandra)

v Graph DB (examples from : ArangoDB)

NoSQL

« NoSQL ("not only SQL") databases are non-
tabular databases and store data differently

than relationaltables.

« NoSQL databases come in a variety of types
based on their data model. The main types are

document, key-value, wide-column, and graph.

« They provide flexible schemas and scale
easily withlarge amounts of data and high user

loads.

The data model we design for a
NoSQL database will depend on the
type of NoSQL database we choose.

Users

ID first_name

1 Leslie

Hobbies

last_name

user_id

cell

city

8125562344 Pawnee

hobby

scrapbooking

eating waffles

working

Key-value db

» A key-value database (or key-value store) uses a simple
key-valuemethod to store data.

 These databases contain a simple string (the key) that is
always uniqueand an arbitrary large data field (the value).

» They are easy to design and implement.

Phone directory

Key Value
An Example of Key-value database) .
Paul (091) 9786453778
Greg (091) 9686154559
Marco (091) 9868564334
Key Value
Phone directory

Key Value <Key=Customer_Name>

Paul (091) 9786453778 <Value=Phone_Number>

Greg (091) 9686154559

Marco (091) 9868564334

A simple example of key-value data store.

REDIS EXAMPLE

» For the vast majority of data storage with Redis, data
will be stored in a simple key/value pair. This is best
shown through the redis-cli (command
line interface)using GET and SET commands.

« EG: we may want to store some information about
books, such as the title and author of a few of our
favorites.

> SET title "The Hobbit" > GET title

OK "The Hobbit"
> GET author
"J.R.R. Tolkien"

>SET author "J.R.R. Tolkien"
OK

DOCUMENT DB

e Built around JSON-like documents, document
databases are both natural and flexible for
developers to work with.

* They promise higher developer productivity, and
faster evolution with application needs.

« As a class of non-relational, sometimes called
NoSQL database, the document data model has
become the most popular alternative to
tabular, relationaldatabases.

MONGODB EXAMPLE

MongoDB

first_name: "Mary",
last_name: “Jones",
1 ‘Mary' 'Jones' '516-555-2048' ‘Long lsland’ 1986 '73.9676' '40.7574' cell: "516-555-2048",
city: “"Long Island",
year_of_birth: 1986,
location: {
type: "Point",
10 1 "Developer’ coordinates: [-73.9876, 40.7574]
11 1 Engineer’

COI umn - Fa mﬂv 5] - S

{ name: "MyApp",

Column-family data’bases store'data’in column families as?ﬁ%ﬁiﬁﬁtrhave many

'‘DocFinder’ 25.7

columns associated with a row key .
cars: [
Example: { make: "Bentley",
‘Bentiey' 1973 year: 1973 },

« RDBMS: Tablel having the columns ID ~Name; Age,
Gender, Gl oo

umn family

(
(

{ Row \/ Columnl \ [Column2 \ / ColumnN

\
\Keyx }\(namel:valuel j) \Qanez valuel)} KQnmn value}

Columnl Column9 ColumnN

(::;v) (name1: valuel)) @anee valued)] \Cnamen: muen))

Figure 10.1. Cassandra’s data model with column families

Cassandra EXAMPLE

frcolumn family

ffrow
"pramod-sadalage" @ |
firstMams: "Pramod"™,
Hame: s ga",
lastHame: "Sadalage"
Figic: "2012/712/12
laztVWiszi w20l 27127

Hirow
"martin-fowler"™ : |
firstHams: "Martin",
lasthame: "Fowler®™,
locatiocn: "Boston™

" _HDB

* Graph |~ " ema-free objects (vertices
dat store sch

or nodes) where arbitrary data can be stored
(properties) and relations between the objects
(edges).

« Edges typically have a direction going from one
object to another or multiple objects.

* Vertices and edges form a network of data
points which is called a “graph”.

ArangoDB EXAMPLE

LET data=[

{

"parent": {"name": "Ned", "surname": "Stark" },

"child": {"name": "Robb", "surname": "Stark" }

b

"parent": {"name": "Ned", "surname": "Stark" },

"child": {"name": "Sansa", "surname": "Stark" }

bA

"parent": { "name": "Ned", "surname": "Stark" },

"child": {"name": "Arya", "surname": "Stark" }

bA

"parent": { "name": "Ned", "surname": "Stark" },

"child": {"name": "Bran", "surname": "Stark" }

