

JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

CST 204 DATABASE MANAGEMENT SYSTEMS

VISION OF THE INSTITUTION

Emerge as a centre of excellence for professional education to produce high quality engineers and

entrepreneurs for the development of the region and the Nation

.

 MISSION OF THE INSTITUTION

 To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

 To provide high quality education in engineering and technology through innovative teaching-learning

practices, research and consultancy, embedded with professional ethics.

 To promote intellectual curiosity and thirst for acquiring knowledge through outcome based

education.

 To have partnership with industry and reputed institutions to enhance the employability skills of the

students and pedagogical pursuits.

 To leverage technologies to solve the real life societal problems through community services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To produce competent professionals with research and innovative skills, by providing them with the most

conducive environment for quality academic and research oriented undergraduate education along with moral

values committed to build a vibrant nation.

DEPARTMENT MISSION

 Provide a learning environment to develop creativity and problem solving skills in a professional

manner.

 Expose to latest technologies and tools used in the field of computer science.

 Provide a platform to explore the industries to understand the work culture and expectation of an

organization.

 Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

 Develop research interest among students which will impart a better life for the society and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates will be able to

 Provide high-quality knowledge in computer science and engineering required for a computer

professional to identify and solve problems in various application domains.

 Persist with the ability in innovative ideas in computer support systems and transmit the knowledge

and skills for research and advanced learning.

 Manifest the motivational capabilities, and turn on a social and economic commitment to community

services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems

reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering
sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system

components or processes that meet the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including

design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid
conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT
tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering
practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal
and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage projects
and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and

life-long learning in the broadest context of technological change.

COURSE OUTCOMES

SUBJECT CODE: CS206

COURSE OUTCOMES

C211.1 Summarize and exemplify fundamental nature and characteristics of database

systems (Cognitive Knowledge Level: Understand)

C211.2 Model real word scenarios given as informal descriptions, using Entity

Relationship diagrams. (Cognitive Knowledge Level: Apply)

C211.3 Model and design solutions for efficiently representing and querying data

using relational model (Cognitive Knowledge Level: Analyze)

C211.4 Demonstrate the features of indexing and hashing in database applications

(Cognitive Knowledge Level: Apply)

C211.5 Discuss and compare the aspects of Concurrency Control and Recovery in

Database systems (Cognitive Knowledge Level: Apply)

C211.6 Explain various types of NoSQL databases (Cognitive Knowledge Level:

Understand)

PROGRAM SPECIFIC OUTCOMES (PSO)

The students will be able to

 Use fundamental knowledge of mathematics to solve problems using suitable analysis methods, data

structure and algorithms.

 Interpret the basic concepts and methods of computer systems and technical specifications to provide

accurate solutions.

 Apply theoretical and practical proficiency with a wide area of programming knowledge, design new

ideas and innovations towards research.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2,L-Less correlated=1

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C211.1 1 2 2 - - - - - - - 1 -

C211..2 2 2 3 - - - - - - - - -

C211..3 2 2 2 - - - - - - - 1 -

C211.4 2 1 2 - - - - - - - 1 -

C211.5 2 2 2 - - - - - - - 1 -

C211..6 2 2 1 - - - - - - - - -

C211 2 2 2.17 0 0 0 0 0 0 0 1 0

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C211.1 1 2 -

C211.2 1 2 -

C211.3 1 2 -

C211.4 1 - -

C211.5 - 2 -

C211.6 - 2 -

C211 1 2 0

CONTENT BEYOND SYLLABUS

S:NO TOPIC

1 Functions, Procedures and HLL interfaces

2 Cost-based query optimization

Reference Materials

Module 1: Introduction & Entity Relationship (ER) Model

Concept & Overview of Database Management Systems (DBMS) - Characteristics of Database system,

Database Users, structured, semi-structured and unstructured data. Data Models andSchema - Three Schema

architecture. Database Languages, Database architectures and classification.

ER model - Basic concepts, entity set & attributes, notations, Relationships and constraints, cardinality,

participation, notations, weak entities, relationships of degree 3.

➢ A database is a collection of related data. Data means, known facts that can be

recorded and that have implicit meaning.

➢ A database management system (DBMS) is a collection of programs that enables users

to create and maintain a database. The DBMS is a general-purpose software system

that facilitates the processes of

defining, constructing, manipulating, and sharing databases among various users

and applications.

➢ Defining a database involves specifying the data types, structures, and

constraints of the data to be stored in the data-base.

➢ Constructing the database is the process of storing the data on some storage

medium that is con-trolled by the DBMS.

➢ Manipulating a database includes functions such as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and

generating reports from the data.

➢ Sharing a database allows multiple users and programs to access the

database simultaneously.

➢ An application program accesses the database by sending queries or requests for data

to the DBMS. A query typically causes some data to be retrieved; a transaction may

cause some data to be read and some data to be written into thedatabase.

➢ Other important functions provided by the DBMS include protecting the database

and maintaining it over a long period of time.

➢ Protection includes system protection against hardware or software malfunction (or

crashes) and security protection against unauthorized or malicious access.

➢ A typical large database may have a life cycle of many years, so the DBMS must

be able to maintain the database system by allowing the system to evolve as

requirements change over time.

Database System Environment

EXAMLE STUDENT DB

Characteristics of the Database Approach

➢ In traditional file processing, each user defines and implements the files needed for a

specific software application as part of programming the application.

➢ Redundancy in defining and storing data results in wasted storage space

and in redundant efforts to maintain common up-to-date data.

➢ In the database approach, a single repository maintains data that is defined once

and then accessed by various users

➢ The main characteristics of the database approach versus the file processing

approach are the following:

1. Self-describing nature of a database system

2. Insulation between programs and data, and data abstraction

3. Support of multiple views of the data

4. Sharing of data and multiuser transaction processing

1. Self-Describing Nature of a Database System

➢ A fundamental characteristic of the database approach is that the database system

contains not only the database itself but also a complete definition or description

of the database structure and constraints.

➢ This definition is stored in the DBMS catalog, which contains information such

as the structure of each file, the type and storage format of each data item, and

various constraints on the data. The information stored in the catalog is called

meta-data and it describes

the structure of the primary database.

2. Insulation between Programs and Data, and Data Abstraction

➢ In traditional file processing, the structure of data files is embedded in the

application programs, so any changes to the structure of a file may require

changing all programs that access that file.

➢ DBMS access programs do not require such changes in most cases. The structure of

data files is stored in the DBMS catalog separately from the access programs. This

property is calledprogram-data independence.

➢ An operation (also called a function or method) is specified in two parts.

● Interface

✓ The interface (or signature) of an operation includes the operation

name and the data types of its arguments (or parameters).

● Implementation

✓ The implementation (or method) of the operation is specified

separately and can be changed without affecting the interface.

➢ User application programs can operate on the data by invoking these operations

through their names and arguments, regardless of how the operations are

implemented. This is termed as program-operation

independence.

➢ The characteristic that allows program-data independence and program operation

independence is calleddata abstraction.

➢ A data model is a type of data abstraction that is used to provide conceptual

representation. A DBMS provides users with a conceptual representation of data

that does not include many of the details of how

the data is stored or how the operations are implemented.

➢ The data model hides storage and implementation details that are not of interest to

most database users.

➢

3. Support of Multiple Views of the Data

➢ A database has many users, each user may require a different perspective or view of

the database. A view may be a subset of the database or it may contain virtual data

that is derived from the database files but is not explicitly stored.

➢ A multiuser DBMS whose users have a variety of distinct applications must

provide facilities for defining multiple views.

4. Sharing of Data and Multiuser Transaction Processing

➢ A multiuser DBMS, must allow multiple users to access the database at the same

time. This is essential if data for multiple applications is to be integrated and

maintained in a single database.

➢ The DBMS must include concurrency control software to ensure that

several users trying to update the same data do so in a controlled manner so that

the result of the updates is correct.

➢ A fundamental role of multiuser DBMS software is to ensure that

concurrent transactions operate correctly and efficiently.

➢ A transaction is an executing program or process that includes one or more database

accesses, such as reading or updating of database records.

➢ Each transaction is supposed to execute a logically correct database access if

executed in its entirety without interference from other transactions.

➢ The DBMS must enforce several transaction properties.

1. Isolation property

■ The isolation property ensures that each transaction

appears to execute in isolation from other transactions, even though

hundreds of transactions may be executing concurrently.

2. Atomicity property

■ The atomicity property ensures that either all the database operations

in a transaction are executed or none are.

ACTORS ON THE SCENE

➢ The people whose jobs involve the day-to-day use of a large database are called as

the actors on the scene.

1. Database Administrators

2. Database Designers

3. End Users

4. System Analysts and Application Programmers (Software

Engineers)

Database Administrators

➢ In a database environment, the primary resource is the database itself, and the

secondary resource is the DBMS and related software. Administering these resources is

the responsibility of the database administrator (DBA).

➢ The DBA is responsible for authorizing access to the database, coordinating and

monitoring its use,and acquiring software and hardware resources as needed. The

DBA is accountable for problems such as security breaches and poor system

response time.

Database Designers

➢ Database designers are responsible for identifying the data to be stored in the data-base

and for choosing appropriate structures to represent

and store this data.

➢ It is the responsibility of database designers to communicate with all prospective

database users in order to understand their requirements and to create a design

that meets these requirements.

➢ Database designers typically interact with each potential group of users and

develop views of the database that meet the data and processing requirements of

these groups.

➢ Each view is then analyzed and integrated with the views of other user groups.

The final database design must be capable of supporting the requirements of all

user groups.

End Users

➢ End users are the people whose jobs require access to the database for querying,

updating, and generating reports.

➢ There are several categories of end users:

1. Casual end users

➢ Casual end users occasionally access the database, but they may need

different information each time.

➢ They use a sophisticated database query language to specify their

requests and are typically middle or high level managers or other

occasional browsers.

2. Naive or parametric end users

➢ Naive or parametric end users make up a sizable portion

of database endusers.

➢ Their main job function revolves around constantly

querying and updating the database, using standard

types of queries and updates

called canned transactions that have been carefully programmed

and tested.

➢ The tasks that such users perform are varied:

3. Sophisticated end users

➢ Sophisticated end users include engineers, scientists, business

analysts, and others who thoroughly familiarize themselves with the

facilities of the DBMS in order to implement their own applications

to meet their complex requirements.

4. Standalone users

➢ .Standalone users maintain personal databases by using ready made

program packages that provide easy-to-use menu based or graphics

based interfaces.

➢ An example is the user of a tax package that stores a variety of personal

financial data for tax purposes.

System Analysts and Application Programmers (Software Engineers)

➢ System analysts determine the requirements of end users, especially naive and

parametric end users, and develop specifications for standard canned transactions

that meet these requirements.

➢ Application programmers implement these specifications as programs,

then they test, debug, document, and maintain these canned transactions. Such

analysts and programmers commonly referred to as

software developers or software engineers

WORKERS BEHIND THE SCENE

➢ The people who work to maintain the database system environment but who are

not actively interested in the database contents as part of their daily job are called

as theworkers behind the scene.

1. DBMS system designers and implementers

2. Tool developers

3. Operators and maintenance personnel (system administration personnel)

DBMS system designers and implementers

➢ DBMS system designers and implementers design and implement the DBMS

modules and interfaces as a software package.

➢ A DBMS is a very complex software system that consists of many components, or

modules, including modules for implementing the catalog, query language

processing, interface processing, accessing and

buffering data, controlling concurrency, and handling data recovery and security.

Tool developers

➢ Tool developers design and implement tools , the software packages that facilitate

database modeling and design, database system design, and improved performance.

➢ Tools are optional packages that are often purchased separately. They include

packages for database design, performance monitoring, natural language or graphical

interfaces, prototyping, simulation, and test data

generation.

Operators and maintenance personnel (system administration personnel)

➢ Operators and maintenance personnel (system administration personnel) are

responsible for the actual running and maintenance of the hardware and software

environment for the database system.

ADVANTAGES OF USING THE DBMS

1. Controlling Redundancy

➢ Redundancy in storing the same data multiple times leads to several

problems.

a) Duplication of effort

b) Storage space is wasted

c) Files that represent the same data may become inconsisten.t

2. Restricting Unauthorized Access

➢ A DBMS should provide a security and authorization subsystem, which the

DBA uses to create accounts and to specify account restrictions.

3. Providing Persistent Storage for Program Objects

➢ Databases can be used to provide persistent storage for program objects and data

structures.

4. Providing Storage Structures and Search Techniques for Efficient Query Processing

➢ Database systems must provide capabilities for efficiently

executing queries andupdates.

➢ The database is typically stored on disk, the DBMS must provide

specialized data structures and search techniques to speed up

disk search for the desired records. Auxiliary files called indexes are used for

this purpose

5. Providing Backup and Recovery

➢ A DBMS must provide facilities for recovering from hardware or software

failures. The backup and recovery subsystem of the DBMS is responsible for

recovery.

➢ For example, if the computer system fails in the middle of a complex

update transaction, the recovery subsystem is responsible for making sure

that the database is restored to the state it was in

before the transaction started executing.

6. Providing Multiple User Interfaces

➢ Users with varying levels of technical knowledge use a database, a DBMS

should provide a variety of user interfaces.

➢ These include query languages for casual users, programming language

interfaces for application programmers, forms and command codes for

parametric users, and menu-driven interfaces

and natural language interfaces for standalone users.

➢ Both forms-style interfaces and menu-driven interfaces are commonly known

asgraphical user interfaces (GUIs).

7. Representing Complex Relationships among Data

➢ A DBMS must have the capability to represent a variety of complex

relationships among the data, to define new relationships as they arise, and

to retrieve and update related data easily and efficiently.

8. Enforcing Integrity Constraints

➢ Integrity constraints are use to ensure accuracy and consistency of data in

DB.

➢ A DBMS should provide capabilities for defining and enforcing these

constraints. The simplest type of integrity constraint involves

specifying a data type for each data item.

9. Permitting Inferencing and Actions Using Rules

➢ Some database systems provide capabilities for defining deduction rules for

inferencing new information from the stored database facts. Such systems are

calleddeductive database systems.

10. Additional Implications of Using the Database Approach

a) Potential for Enforcing Standards.

b) Reduced Application Development Time

c) Flexibility.

d) Availability of Up-to-Date Information

e) Economies of Scale.

DATABASE SYSTEM CONCEPTSAND ARCHITECTURE

➢ One fundamental characteristic of the database approach is that it provides

some level of data abstraction. Data abstraction refers to the suppression of

details of data organization and storage, and the highlighting of the essential

features for an improved understanding of data.

➢ A data model is a collection of concepts that can be used to describe the

structure of a database provides the necessary means to achieve this

abstraction.

Categories of Data Models

1. High-level or conceptual data models provide concepts that are close to the way

many users perceive data.

2. Low-level or physical data models provide concepts that describe the details

of how data is stored on the computer storage media.

3. Representational(orimplementation)data models,which provide concepts that may

be easily understood by end users but that are not too far removed from

the way data is organized in computer

storage.

➢ Conceptual data models use concepts such as entities, attributes, and

relationships.

➢ An entity represents a real-world object or concept, such as an employee or a project

from the mini world that is described in the database.

➢ An attribute represents some property of interest that further describes

an entity, such as the employee’s name or salary.

➢ A relationship among two or more entities represents an association among the

entities, for example, a works-on relationship between an employee and a project.

➢ Representational or implementation data models are the models used most frequently

in traditional commercial DBMSs. They are

1. relational data model,

2. network data model

3. hierarchical data model

Schemas, Instances, and Database State

➢ The description of a database is called thedatabase schema, which is specified during

database design and is not expected to change frequently.

➢ A displayed schema is called aschema diagram.

➢ A schema diagram displays only some aspects of a schema, such as the names of

record types and data items, and some types of constraints.

➢ The actual data in a database may change quite frequently. The data in the database

at a particular moment in time is called a database state or snapshot. It is also called the

current set of occurrences or instances in the database. Each schema construct has its

own current set of

instances.

The difference between database schema and database state

➢ When we define a new database the corresponding database state is the empty state

with no data.

➢ We get the initial state of the database when the database is first populated or

loaded with the initial data.

➢ At any point in time, the database has acurrent state.

➢ A valid state is, a state that satisfies the structure and constraints specified in the

schema.

➢ The DBMS stores the descriptions of the schema constructs and

constraints also called themeta-data in the DBMS catalog.

➢ The schema is not supposed to change frequently ,but it is not uncommon that

changes occasionally need to be applied to the schema as the application

requirements change. It is called as schema evolution.

Three-Schema Architectureand Data Independence

The Three-Schema Architecture

➢ The goal of the three-schema architecture is to separate the user applications from the

physical database. In this architecture, schemas can be defined at the following three

levels:

1. Internal level

➢

➢ The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2. Conceptual level

➢ The conceptual level has a conceptual schema, which describes the structure of the

whole database for a community of users. The conceptual schema hides the details

of physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints.

3. External or view level

➢ The external or view level includes a number of external schemas or user views. Each

external schema describes the part of the database that a particular user group is

interested in and hides the rest of the database from that user group.

➢ The processes of transforming requests and results between levels are called

mappings.

DATA INDEPENDENCE

➢ The capacity to change the schema at one level of a database system without having

to change the schema at the next higher level.

➢ Two types of data independence:

1. Logical data independence

➢ Logical data independence is the capacity to change the conceptual schema without

having to change external schemas or application programs.

2. Physical data independence

Physical data independence is the capacity to change the internal schema

without having to change the conceptual schema.

➢ Data independence occurs because when the schema is changed at some level, the

schema at the next higher level remains unchanged; only the mapping between the

two levels is changed.

Database Languages and Interfaces

DBMS Languages

Data definition language (DDL), is used by the DBA and by database

designers to define conceptual and internal schemas schemas.

Storage definition language (SDL), is used to specify the internal

schema.

View definition language (VDL), to specify user views and their mappings to

the conceptual schema.

Data manipulation language (DML) is used for retrieval,

insertion, deletion, and modification of the data.

➢ SQL relational database language which represents a combination of DDL, VDL,

and DML, as well as statements for constraint specification, schema evolution,

and other features.

➢ There are two main types of DMLs.

1. high-level or nonprocedural DML can be used on its own to specify complex

database operations concisely.

2. low-level or procedural DML must be embedded in a general-purpose

programming language. This type of DML typically retrieves individual records

or objects from the database and

processes each separately. Therefore, it needs to use programming language

constructs, such as looping, to retrieve and process each record from a set of

records. Low-level DMLs are also called record-at-a-time DMLs

DBMS Interfaces

➢ User-friendly interfaces provided by a DBMS may include the following:

1. Menu-Based Interfaces for Web Clients or Browsing.

2. Forms-Based Interfaces.

3. Graphical User Interfaces (GUI)

4. Natural Language Interfaces

5. Speech Input and Output

6. Interfaces for Parametric Users.

DATA MODELING USING THEENTITY-RELATIONSHIP (ER) MODEL

➢ Entity-Relationship (ER) model, which is a popular high-level conceptual data

model, used for the conceptual design of database applications, and many database

design tools employ its concepts.

➢ The diagrammatic notation associated with the ER model, known as ER

diagrams.

Entity, Types, Entity Sets, Attributes,and Keys

➢ An entity may be an object with a physical existence for example, a particular

person, car, house, or employee or it may be an object with a conceptual

existence.

➢ Each entity has attributes ,the particular properties that describe it.

Composite versus Simple (Atomic) Attributes

➢ Composite attributes can be divided into smaller subparts, which represent more

basic attributes with independent meanings.

➢ Attributes that are not divisible are calledsimple or atomic attributes.

Single-Valued versus Multivalued Attributes

➢ Attributes have a single value for a particular entity; such attributes are called single-

valued.

For example, Age is a single-valued attribute of a person.

➢ Attribute that can have different numbers of values for same attributes are called

multivalued.

Eg:College_degrees attribute Stored

versus Derived Attributes

➢ In some cases, two (or more) attribute values are related ,for example,

the Age and Birthdate attributes of a person. For a particular person entity, the

value of Age can be determined from the current (today’s) date and the value of that

person’s birthdate. The Age attribute is hence called a derived attribute and is

said to be derivable from the birthdate attribute, which is called astored attribute.

NULL Values

➢ In some cases, a particular entity may not have an applicable value for an

attribute.

Complex Attributes

➢ Composite and multivalued attributes can be nested. }. Such attributes are called

complex attributes.

Entity type

➢ An entity type defines a collection (or set) of entities that have the same

attributes. Each entity type in the database is described by its name and attributes.

Entity set

➢ The collection of all entities of a particular entity type in the data-base at any point

in time is called an entity set, the entity set is usually referred to using the same

name as the entity type.

➢ An entity type describes the schema or intension for a set of entities that share the

same structure. The collection of entities of a particular entity type is grouped

into an entity set, which is also called the

extension of the entity type.

 Key attributes and entity type

➢ An important constraint on the entities of an entity type is the key or

uniqueness constrainton attributes.

➢ An entity type usually has one or more attributes whose values are distinct for

each individual entity in the entity set. Such an attribute is called a key

attribute, and its values can be used to identify each entity uniquely.

Composite key

➢ It must be minimal,that is, all component attributes must be included in the

composite attribute to have the uniqueness property.

RELATIONSHIP TYPES, RELATIONSHIP SETS, ROLES, AND

STRUCTURAL CONSTRAINTS

➢ A relationship type R among n entity types E1, E2, ..., En defines a set of associations

or a relationship set among entities from these entity types.

➢ As for the case of entity types and entity sets, a relationship type and its

corresponding relationship set are customarily referred to by the same name, R.

Mathematically, the relationship set R is a set of relationship

instances ri,

➢ where each ri associates n individual entities (e1, e2, ..., en), and each entity ej in

ri is a member of entity setEj, 1 f j f n.

➢ Hence, a relationship set is a mathematical relation on E1, E2, ..., En; alter-

natively, it can be defined as a subset of the Cartesian product of

the entity sets E1 × E2 × ... × En.

➢ Each of the entity types E1, E 2, ..., En is said to participate in the relationship

type R; similarly, each of the individual entities e1, e2, ..., en is said to participate

in the relationship instance

ri = (e1, e2, ..., en).

Degree of a Relationship Type

➢ The degree of a relationship type is the number of participating entity types.

➢ A relationship type of degree two is called binary, and one of degree three is called

ternary.

Role name

➢ The role name signifies the role that a participating entity from the entity type

plays in each relationship instance, and helps to explain what the relationship

means.

➢ The relationship types in which the same entity type participates more than once

in a relationship type in different roles such relationship

types are called recursive relationships.

Constraints on Binary Relationship Types

➢ Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship

set.

➢ Two main types of binary relationship constraints: cardinality ratio and

participation.

Cardinality Ratios for Binary Relationships

➢ The cardinality ratio for a binary relationship specifies the maximum number of

relationship instances that an entity can participate in.

➢ The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and

M:N.

Participation Constraints and Existence Dependencies

➢ The participation constraint specifies whether the existence of an entity depends on

its being related to another entity via the relationship type.

➢ This constraint specifies the minimum number of relationship instances that each

entity can participate in, and is sometimes called the minimum cardinality constraint.

➢ There are two types of participation constraints, they are total and

partial

1. Total participation

➢ Total participation is also calledexistence dependency

2. Partial participation

➢ partial, meaning that some or part of the set of employee entities are

related to some department entity but not necessarily all.

➢ In ER diagrams, total participation (or existence dependency) is displayed as a

double line connecting the participating entity type to the relationship,

➢ partial participation is represented by asingle line

➢ The cardinality ratio and participation constraints, are together known as the structural

constraintsof a relationship type.

WEAK ENTITY TYPES

➢ Entity types that do not have key attributes of their own are called weak entity types.

➢ Weak entity are identified by being related to specific entities from another entity

type in combination with one of their attribute values.

➢ This other entity type is called theidentifying or owner entity type,

➢ The relationship type that relates a weak entity type to its owner is called the

identifying relationshipof the weak entity type.

➢ A weak entity type always has a total participation constraint (existence

dependency) with respect to its identifying relationship because a weak entity can

not be identified without an owner entity.

➢ A weak entity type normally has a partial key, which is the attribute

that can uniquely identify weak entities that are related to the same owner entity.

Design Choices for ER Conceptual Design

Module 2: Relational Model

Structure of Relational Databases - Integrity Constraints, Synthesizing ER diagram to relational schema Introduction to

Relational Algebra - select, project, cartesian product operations, join - Equi-join, natural join. query examples,

introduction to Structured Query Language (SQL), Data Definition Language (DDL), Table definitions and operations –

CREATE, DROP, ALTER, INSERT, DELETE, UPDATE.

Relational Model Concepts

● The relational Model of Data is based on the concept of a Relation.

● A Relation is a mathematical concept based on the ideas of sets.

● The strength of the relational approach to data management comes from the formal foundation provided

by the theory of relations.

Relation

● RELATION: A table of values

– A relation may be thought of as a set of rows.

– A relation may alternately be thought of as a set of columns.

– Each row represents a fact that corresponds to a real-world entity or relationship.

– Each row has a value of an item or set of items that uniquely identifies that row in the table.

– Sometimes row-ids or sequential numbers are assigned to identify the rows in the table.

– Each column typically is called by its column name or column header or attribute name.

Schema of a Relation

● A Relation may be defined in multiple ways.

● The Schema of a Relation: R (A1, A2, An)

Relation schema R is defined over attributes A1, A2, An

For Example -

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four attributes Cust-id, Cust-name, Address, Phone#, each of which has a

domain or a set of valid values. For example, the domain of Cust-id is 6 digit numbers.

Tuples

● A tuple is an ordered set of values

● Each value is derived from an appropriate domain.

● Each row in the CUSTOMER table may be referred to as a tuple in the table and would consist of four

values.

● <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

is a tuple belonging to the CUSTOMER relation.

● A relation may be regarded as a set of tuples (rows).

● Columns in a table are also called attributes of the relation.

●

Domains

● A domain has a logical definition: e.g.,

“USA_phone_numbers” are the set of 10 digit phone numbers valid in the U.S.

● A domain may have a data-type or a format defined for it. The USA_phone_numbers may have a format:

(ddd)-ddd-dddd where each d is a decimal digit. E.g., Dates have various formats such as monthname,

date, year or yyyy-mm-dd, or dd mm,yyyy etc.

● An attribute designates the role played by the domain. E.g., the domain Date may be used to define

attributes “Invoice-date” and “Payment-date”.

FORMAL DEFINITIONS

The relation is formed over the cartesian product of the sets; each set has values from a domain; that domain is used in a

specific role which is conveyed by the attribute name.

For example, attribute Cust-name is defined over the domain of strings of 25 characters. The role these strings play in

the CUSTOMER relation is that of the name of customers.

Formally,

Given R(A1, A2, , An)

r(R) ⊂ dom (A1) X dom (A2) X X dom(An)

R: schema of the relation

r of R: a specific "value" or population of R.

R is also called the intension of a relation r is also called the extension of a relation

Let S1 = {0,1}

Let S2 = {a,b,c} Let R ⊂ S1 X S2

Then for example: r(R) = {<0,a> , <0,b> , <1,c> }

is one possible “state” or “population” or “extension” r of the relation R, defined over domains S1 and S2. It has three

tuples.

CHARACTERISTICS OF RELATIONS

● Ordering of tuples in a relation r(R): The tuples are not considered to be ordered, even though they

appear to be in the tabular form.

● Ordering of attributes in a relation schema R (and of values within each tuple): We will consider the

attributes in R(A1, A2, ..., An) and the values in t=<v1, v2, ..., vn> to be ordered .

(However, a more general alternative definition of relation does not require this

ordering).

● Values in a tuple: All values are considered atomic (indivisible). A special null value is used to represent

values that are unknown or inapplicable to certain tuples.

● component values of a tuple t by t[Ai] = vi (the value of attribute Ai for tuple t).

Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the values of attributes

Au, Av, ..., Aw, respectively.

Relational Integrity Constraints

● Constraints are conditions that must hold on all valid relation instances. There are three main types of

constraints:

1. Key constraints

2. Entity integrity constraints

3. Referential integrity constraints Key Constraints

● Superkey of R: A set of attributes SK of R such that no two tuples in any valid relation instance r(R) will

have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ≠ t2[SK].

● Key of R: A "minimal" superkey; that is, a superkey K such that removal of any attribute from K results in a

set of attributes that is not a superkey.

Example: The CAR relation schema:

CAR(State, Reg#, SerialNo, Make, Model, Year)

has two keys Key1 = {State, Reg#}, Key2 = {SerialNo}, which are also superkeys. {SerialNo, Make} is a superkey but not a

key.

● If a relation has several candidate keys, one is chosen arbitrarily to be the primary key. The primary key

attributes are underlined.

Entity Integrity

● Relational Database Schema: A set S of relation schemas that belong to the same database. S is the name

of the database.

S = {R1, R2, ..., Rn}

● Entity Integrity: The primary key attributes PK of each relation schema R in S cannot have null

values in any tuple of r(R). This is because primary key values are used to identify the individual tuples.

t[PK] ≠ null for any tuple t in r(R) for any R

● Note: Other attributes of R may be similarly constrained to disallow null values, even though

they are not members of the primary key.

Referential Integrity

● A constraint involving two relations (the previous constraints involve a single relation).

● Used to specify a relationship among tuples in two relations: the referencing relation and the

referenced relation.

● Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the

primary key attributes PK of the referenced relation R2. A tuple t1 in R1 is said to reference a tuple t2 in

R2 if t1[FK] = t2[PK].

● A referential integrity constraint can be displayed in a relational database schema as a directed

arc from R1.FK to R2.PK

Referential Integrity Constraint

Statement of the constraint

The value in the foreign key column (or columns) FK of the the referencing relation R1 can be either:

(1) a value of an existing primary key value of the corresponding primary key PK in the

referenced relation R2,, or..

(2) a null.

In case (2), the FK in R1 should not be a part of its own primary key.

Update Operations on Relations

● INSERT a tuple.

● DELETE a tuple.

● MODIFY a tuple.

● Integrity constraints should not be violated by the update operations.

● Several update operations may have to be grouped together.

● Updates may propagate to cause other updates automatically. This may be necessary to maintain

integrity constraints.

● In case of integrity violation, several actions can be taken: (e.g. Tables: Employee and Work_On) Cancel

the operation that causes the violation (REJECT option)

Perform the operation but inform the user of the violation

Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option) Execute a user-specified

error-correction routine

Q. Consider the following relations for a database that keeps track of student enrollment in courses and the books

adopted for each course:

STUDENT(SSN, Name, Major, Bdate) COURSE(Course#, Cname, Dept) ENROLL(SSN, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_ISBN) TEXT(Book_ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this schema.

--

Relational Algebra

● Relational algebra is the basic set of operations for the relational model

● These operations enable a user to specify basic retrieval requests (or queries)

● The result of an operation is a new relation, which may have been formed from one or more input

relations

● This property makes the algebra “closed” (all objects in relational algebra are relations)

● The algebra operations thus produce new relations

● These can be further manipulated using operations of the same algebra

● A sequence of relational algebra operations forms a relational algebra expression

● The result of a relational algebra expression is also a relation that represents the result of a database

query (or retrieval request)

● Relational Algebra consists of several groups of operations

o Unary Relational Operations

▪ SELECT (symbol: s (sigma))

▪ PROJECT (symbol: p (pi))

▪ RENAME (symbol: ρ (rho))

o Relational Algebra Operations From Set Theory

▪ UNION (È), INTERSECTION (Ç), DIFFERENCE (or MINUS, –)

▪ CARTESIAN PRODUCT (x)

o Binary Relational Operations

▪ JOIN (several variations of JOIN exist)

▪ DIVISION

o Additional Relational Operations

▪ OUTER JOINS, OUTER UNION

▪ AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM,

COUNT, AVG, MIN, MAX)

Unary Relational Operations: SELECT

■ The SELECT operation (denoted by s (sigma)) is used to select a subset of the tuples from a relation based

on a selection condition.

■ The selection condition acts as a filter

■ Keeps only those tuples that satisfy the qualifying condition

■ Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)

■ Examples:

■ Select the EMPLOYEE tuples whose department number is 4: s DNO = 4 (EMPLOYEE)

■ Select the employee tuples whose salary is greater than $30,000:

s SALARY > 30,000 (EMPLOYEE)

■ In general, the select operation is denoted by s <selection condition>(R) where

■ the symbol s (sigma) is used to denote the select operator

■ the selection condition is a Boolean (conditional) expression specified on the attributes of relation

R

■ tuples that make the condition true are selected

■ appear in the result of the operation

■ tuples that make the condition false are filtered out

■ discarded from the result of the operation

■ SELECT Operation Properties

● The SELECT operation s <selection condition>(R) produces a relation S that has the

same schema (same attributes) as R

● SELECT s is commutative:

● s <condition1>(s < condition2> (R)) = s <condition2> (s < condition1> (R))

● Because of commutativity property, a cascade (sequence) of SELECT

operations may be applied in any order:

● s<cond1>(s<cond2> (s<cond3> (R)) = s<cond2> (s<cond3> (s<cond1> (R)))

● A cascade of SELECT operations may be replaced by a single

selection with a conjunction of all the conditions:

● s<cond1>(s< cond2> (s<cond3>(R)) = s <cond1> AND < cond2> AND < cond3>(R)))

● The number of tuples in the result of a SELECT is less than (or equal

to) the number of tuples in the input relation R The following query results refer to this database state

Unary Relational Operations: PROJECT

■ PROJECT Operation is denoted by p (pi)

■ This operation keeps certain columns (attributes) from a relation and discards the other columns.

■ PROJECT creates a vertical partitioning

■ The list of specified columns (attributes) is kept in each tuple

■ The other attributes in each tuple are discarded

■ Example: To list each employee’s first and last name and salary, the following is used: pLNAME,

FNAME,SALARY(EMPLOYEE)

■ The general form of the project operation is:

p<attribute list>(R)

■ p (pi) is the symbol used to represent the project operation

■ <attribute list> is the desired list of attributes from relation R.

■ The project operation removes any duplicate tuples

■ This is because the result of the project operation must be a set of tuples

■ Mathematical sets do not allow duplicate elements.

■ PROJECT Operation Properties

■ The number of tuples in the result of projection p<list>(R) is always less or equal to the

S

number of tuples in R

■ If the list of attributes includes a key of R, then the number of tuples in the result of

PROJECT is equal to the number of tuples in R

■ PROJECT is not commutative

■ p <list1> (p <list2> (R)) = p <list1> (R) as long as <list2> contains the attributes in <list1>

■

To retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a

select and a project operation

■ We can write a single relational algebra expression as follows:

■ pFNAME, LNAME, SALARY(s DNO=5(EMPLOYEE))

■ OR We can explicitly show the sequence of operations, giving a name to each intermediate

relation:

■ DEP5_EMPS ← s DNO=5(EMPLOYEE)

■ RESULT ← p FNAME, LNAME, SALARY (DEP5_EMPS)

Unary Relational Operations: RENAME

■ The RENAME operator is denoted by ρ (rho)

■ In some cases, we may want to rename the attributes of a relation or the relation name or both

■ Useful when a query requires multiple operations

■ Necessary in some cases

■ The general RENAME operation ρ can be expressed by any of the following forms:

ρS (B1, B2, …, Bn)(R) changes both:

the relation name to S, and

the column (attribute) names to B1, B1, …..Bn

ρ (R) changes:

the relation name only to S

ρ(B1, B2, …, Bn)(R) changes:

the column (attribute) names only to B1, B1, …..Bn

■ For convenience, we also use a shorthand for renaming attributes in an intermediate relation:

■ If we write:

• RESULT ← p FNAME, LNAME, SALARY (DEP5_EMPS)

• RESULT will have the same attribute names as DEP5_EMPS (same attributes as

EMPLOYEE)

■ If we write:

• RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)← p FNAME, LNAME, SALARY

(DEP5_EMPS)

■ The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX, SAL, SU, DNO, respectivel

■ UNION Operation

■ Binary operation, denoted by È

■ The result of R È S, is a relation that includes all tuples that are either in R or in S or in both R and

S

■ Duplicate tuples are eliminated

■ The two operand relations R and S must be “type compatible” (or UNION compatible)

■ R and S must have same number of attributes

■ Each pair of corresponding attributes must be type compatible (have same or compatible

domains)

■ Example:

■ To retrieve the social security numbers of all employees who either work in department 5

(RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)

■ We can use the UNION operation as follows: DEP5_EMPS ← sDNO=5 (EMPLOYEE) RESULT1 ← p

SSN(DEP5_EMPS) RESULT2(SSN) ← pSUPERSSN(DEP5_EMPS) RESULT ← RESULT1 È RESULT2

■ The union operation produces the tuples that are in either RESULT1 or RESULT2 or both

■ Type Compatibility of operands is required for the binary set operation UNION È, (also for INTERSECTION

Ç, and SET DIFFERENCE)

■ R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:

■ they have the same number of attributes, and

■ the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ...,

n).

■ The resulting relation for R1ÈR2 (also for R1ÇR2, or R1–R2, see next slides) has the same attribute names

as the first operand relation R1 (by convention)

KTU STUDEN

■ INTERSECTION is denoted by ᴧ

■ The result of the operation R ᴧ S, is a relation that includes all tuples that are in both R and S

■ The attribute names in the result will be the same as the attribute names in R

■ The two operand relations R and S must be “type compatible”

■ SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –

■ The result of R – S, is a relation that includes all tuples that are in R but not in S

■ The attribute names in the result will be the same as the attribute names in R

■ The two operand relations R and S must be “type compatible”

■ Notice that both union and intersection are commutative operations; that is

■ R È S = S È R, and R Ç S = S Ç R

■ Both union and intersection can be treated as n-ary operations applicable to any number of relations as

both are associative operations; that is

■ R È (S È T) = (R È S) È T

■ (R Ç S) Ç T = R Ç (S Ç T)

■ The minus operation is not commutative; that is, in general R – S ≠ S – R

CARTESIAN PRODUCT

■ CARTESIAN (or CROSS) PRODUCT Operation

■ This operation is used to combine tuples from two relations in a combinatorial fashion.

■ Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)

■ Result is a relation Q with degree n + m attributes:

■ Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

■ The resulting relation state has one tuple for each combination of tuples—one from R and one

from S.

■ Hence, if R has nR tuples (denoted as |R| = nR), and S has nS tuples, then R x S will have nR * nS

tuples.

■ The two operands do NOT have to be "type compatible”

■ Generally, CROSS PRODUCT is not a meaningful operation Can become meaningful when followed

by other operations Example (not meaningful):

FEMALE_EMPS ← s SEX=’F’(EMPLOYEE) EMPNAMES ← p FNAME, LNAME, SSN (FEMALE_EMPS) EMP_DEPENDENTS ←

EMPNAMES x DEPENDENT

EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT whether or not they are actually

related

Binary Relational Operations: JOIN (denoted by)

■ The sequence of CARTESIAN PRODECT followed by SELECT is used quite commonly to identify and

select related tuples from two relations

■ A special operation, called JOIN combines this sequence into a single operation

■ This operation is very important for any relational database with more than a single relation,

because it allows us combine related tuples from various relations

■ The general form of a join operation on two relations R(A1, A2, . . ., An) and S(B1, B2, . .

., Bm) is:

R <join condition>S

■ where R and S can be any relations that result from general relational algebra

expressions.

EQUIJOIN

■ The most common use of join involves join conditions with equality comparisons only

■ Such a join, where the only comparison operator used is =, is called an EQUIJOIN.

■ In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need

not be identical) that have identical values in every tuple.

NATURAL JOIN Operation

Another variation of JOIN called NATURAL JOIN — denoted by * — was created to get rid of the second (superfluous)

attribute in an EQUIJOIN condition.

because one of each pair of attributes with identical values is superfluous

The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes,

have the same name in both relations

If this is not the case, a renaming operation is applied first.

■ Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT

K

T

U

 STUDENTS

and DEPT_LOCATIONS, it is sufficient to write:

o DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

■ Only attribute with the same name is DNUMBER

■ An implicit join condition is created based on this attribute:

o DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

o Another example: Q ← R(A,B,C,D) * S(C,D,E)

o The implicit join condition includes each pair of attributes with the same name, “AND”ed

together:

▪ R.C=S.C AND R.D.S.D

o Result keeps only one attribute of each such pair:

▪ Q(A,B,C,D,E)

■ DIVISION Operation

The division operation is applied to two relations

R(Z) ¸ S(X), where X subset Z. Let Y = Z - X (and hence Z = X È Y); that is, let Y be the set of attributes of R that are not

attributes of S.

The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR appear in R with tR

[Y] = t, and with

tR [X] = ts for every tuple ts in S.

For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in

combination with every tuple in S.

Relational Calculus

■ A relational calculus expression creates a new relation, which is specified in terms of variables that range

over rows of the stored database relations (in tuple calculus) or over columns of the stored relations (in

domain calculus).

■ In a calculus expression, there is no order of operations to specify how to retrieve the query result—a

calculus expression specifies only what information the result should contain.

■ This is the main distinguishing feature between relational algebra and relational calculus.

■ Relational calculus is considered to be a nonprocedural language.

■ This differs from relational algebra, where we must write a sequence of operations to specify a

retrieval request; hence relational algebra can be considered as a procedural way of stating a

query.

Tuple Relational Calculus

■ The tuple relational calculus is based on specifying a number of tuple variables.

■ Each tuple variable usually ranges over a particular database relation, meaning that the variable

may take as its value any individual tuple from that relation.

■ A simple tuple relational calculus query is of the form

▪ {t | COND(t)}

o where t is a tuple variable and COND (t) is a conditional expression involving t.

o The result of such a query is the set of all tuples t that satisfy COND (t).

■ Example: To find the first and last names of all employees whose salary is above

$50,000, we can write the following tuple calculus expression:

o {t.FNAME, t.LNAME | EMPLOYEE(t) AND t.SALARY>50000}

■ The condition EMPLOYEE(t) specifies that the range relation of tuple variable t is EMPLOYEE.

■ The first and last name (PROJECTION pFNAME, LNAME) of each EMPLOYEE tuple t that satisfies

the condition t.SALARY>50000 (SELECTION s SALARY >50000) will be retrieved.

The Existential and Universal Quantifiers

■ Two special symbols called quantifiers can appear in formulas; these are the universal quantifier (") and

the existential quantifier ($).

■ Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an (" t) or ($ t) clause;

otherwise, it is free.

■ If F is a formula, then so are ($ t)(F) and (" t)(F), where t is a tuple variable.

■ The formula ($ t)(F) is true if the formula F evaluates to true for some (at least one) tuple assigned

to free occurrences of t in F; otherwise ($ t)(F) is false.

■ The formula (" t)(F) is true if the formula F evaluates to true for every tuple (in the universe)

assigned to free occurrences of t in F; otherwise (" t)(F) is false.

■ " is called the universal or “for all” quantifier because every tuple in “the universe of” tuples must make F

true to make the quantified formula true.

■ $ is called the existential or “there exists” quantifier because any tuple that exists in “the universe of”

tuples may make F true to make the quantified formula true.

■ The language SQL is based on tuple calculus. It uses the basic block structure to express the queries in

tuple calculus:

■ SELECT <list of attributes>

■ FROM <list of relations>

■ WHERE <conditions>

■ SELECT clause mentions the attributes being projected, the FROM clause mentions the relations needed

in the query, and the WHERE clause mentions the selection as well as the join conditions.

SQL syntax is expanded further to accommodate other operations

Another language which is based on tuple calculus is QUEL which actually uses the range variables as in tuple calculus. Its

syntax includes:

RANGE OF <variable name> IS <relation name> Then it uses

RETRIEVE <list of attributes from range variables> WHERE <conditions>

This language was proposed in the relational DBMS INGRES.

The Domain Relational Calculus

■ Another variation of relational calculus called the domain relational calculus, or simply, domain calculus is

equivalent to tuple calculus and to relational algebra.

■ The language called QBE (Query-By-Example) that is related to domain calculus was developed almost

concurrently to SQL at IBM Research, Yorktown Heights, New York.

■ Domain calculus was thought of as a way to explain what QBE does.

■ Domain calculus differs from tuple calculus in the type of variables used in formulas:

■ Rather than having variables range over tuples, the variables range over single values from

domains of attributes.

■ To form a relation of degree n for a query result, we must have n of these domain variables— one for

each attribute.

■ An expression of the domain calculus is of the form

{ x1, x2, . . ., xn |

COND(x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m)}

■ where x1, x2, . . ., xn, xn+1, xn+2, . . ., xn+m are domain variables that range over domains (of

attributes)

■ and COND is a condition or formula of the domain relational calculus.

QBE: A Query Language Based on Domain Calculus

■ This language is based on the idea of giving an example of a query using example elements.

■ An example element stands for a domain variable and is specified as an example value preceded by the

underscore character.

■ P. (called P dot) operator (for “print”) is placed in those columns which are requested for the result of the

query.

■ A user may initially start giving actual values as examples, but later can get used to providing a minimum

number of variables as example elements.

Relational Database Design Using ER-to-Relational Mapping

ER-to-Relational Mapping Algorithm

COMPANY database example

Assume that the mapping will create tables with simple single-valued attributes

Step 1: Mapping of Regular Entity Types

For each regular entity type, create a relation R that includes all the simple attributes of E Called entity relations . Each

tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types

For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R .

Include primary key attribute of owner as foreign key attributes of R

Step 3: Mapping of Binary 1:1 Relationship Types

For each binary 1:1 relationship type . Identify relations that correspond to entity types participating in R . Possible

approaches: Foreign key approach. Merged relationship approach.Crossreference or relationship relation approach

Step 4: Mapping of Binary 1:N Relationship Types.

For each regular binary 1:N relationship type. Identify relation that represents participating entity type at N-side of

relationship type . Include primary key of other entity type as foreign key in S . Include simple attributes of 1:N

relationship type as attributes of S

Alternative approach • Use the relationship relation (cross-reference) option as in the third option for binary 1:1

relationships

Step 5: Mapping of Binary M:N Relationship Types . For each binary M:N relationship type.Create a new relation S.

Include primary key of participating entity types as foreign key attributes in S. Include any simple attributes of M:N

relationship type

Step 6: Mapping of Multivalued Attributes

For each multivalued attribute ,Create a new relation .Primary key of R is the combination of A and K. If the multivalued

attribute is composite, include its simple components

Step 7: Mapping of N-ary Relationship Types

For each n-ary relationship type R , Create a new relation S to represent R

• Include primary keys of participating entity types as foreign keys

• nclude any simple attributes as attributes

Basic SQL

♣ SQL language ♣

Considered one of the major reasons for the commercial success of relational databases SQL -Structured Query Language

Statements for data definitions, queries, and updates (both DDL and DML)

SQL Data Definition and Data Types Terminology:

Table, row, and column used for relational model terms relation, tuple, and attribute

CREATE statement - Main SQL command for data definition SQL schema - Identified by a schema name

Includes an authorization identifier and descriptors for each element

Schema elements include - Tables, constraints, views, domains, and other constructs. Each statement in SQL ends with a

semicolon.

CREATE SCHEMA statement

e.g ; CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

Specify a new relation Provide name

Specify attributes and initial constraints. Can optionally specify schema:

CREATE TABLE COMPANY.EMPLOYEE ... or CREATE TABLE EMPLOYEE...

The CREATE TABLE Command in SQL

Base tables (base relations) Relation and its tuples are actually created and stored as a file by the DBMS Virtual relations.

Created through the CREATE VIEW statement

Attribute Data Types and Domains in SQL Basic data types

● Numeric data types •

● Integer numbers: INTEGER, INT, and SMALLINT

● Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION

● Character-string data types • Fixed length: CHAR(n), CHARACTER(n) • Varying length: VARCHAR(n), CHAR

VARYING (n), CHARACTER VARYING(n)

● Bit-string data types • Fixed length: BIT(n) • Varying length: BIT VARYING(n)

● Boolean data type • Values of TRUE or FALSE or NULL

● DATE data type • Ten positions • Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD

K

T

U STUDENTS

● The SELECT-FROM-WHERE Structure of SQL Queries SELECT <attributes>

FROM <table> WHERE<condition>

EXAMPLES

QUERY Retrieve the birthdate and address of the employee(s) whose name is ‘John B. Smith’

SELECT BDATE, ADDRESS FROM EMPLOYEE WHERE FNAME=‘John’ AND MINIT=‘B’ AND LNAME=‘Smith’;

QUERY Retrieve the name and address of all employees who work for the ‘Research’ department.

SELECT FNAME, LNAME, ADDRESSλ FROM EMPLOYEE, DEPARTMENT WHERE DNAME=‘Research’ AND DNUMBER=DNO;

Unspecified WHERE-Clause and Use of Asterisk (*)

SELECT * FROM EMPLOYEE WHERE DNO=5;

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE DNAME=‘Research’ AND DNO=DNUMBER;

QUERY Select all combinations of EMPLOYEE SSN and DEPARTMENT DNAME in the database.

SELECT * FROM EMPLOYEE, DEPARTMENT;

Tables as Sets in SQL QUERY

Retrieve the salary of every employee and all distinct salary values.

SELECT ALL SALARY FROM EMPLOYEE; SELECT DISTINCT SALARYλ FROM EMPLOYEE;

Substring Comparisons, Arithmetic Operators, and Ordering

QUERY:Retrieve all employees whose address is in Houston, Texas.

SELECT FNAME, LNAME FROM EMPLOYEE WHERE ADDRESS LIKE

‘%Houston,TX%’;

QUERY Find all employees who were born during the 1950s.

SELECT FNAME, LNAMEλ FROM EMPLOYEE WHERE BDATE LIKE’_ _ 5 ’;

QUERY Retrieve all employees in department 5 whose salary is between $30,000 and $40,000. SELECT *FROM

EMPLOYEE WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO = 5;

QUERY Retrieve a list of employees and the projects they are working on, ordered by department and, within each

department, ordered alphabetically by last name, first name.

SELECT DNAME, LNAME, FNAME, PNAMEλ FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT WHERE

DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER ORDER BY DNAME, LNAME, FNAME;

Explicit Sets and NULLS in SQL

QUERY Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.

SELECT DISTINCT ESSNλ FROM WORKS_ON WHERE PNO IN (1, 2, 3);

QUERY Retrieve the names of all employees who do not have supervisors. SELECT FNAME, LNAME FROM EMPLOYEE

WHERE SUPERSSN IS NULL;

Renaming Attributes and Joined Tables

QUERY For each employee, retrieve the employee’s first and last name and the first and last name of his or her

immediate supervisor. S

ELECT E.LNAME AS EMPLOYEE_NAME, S.LNAME AS SUPERVISOR_NAME FROM EMPLOYEE AS E, EMPLOYEE AS S WHERE

E.SUPERSSN=S.SSN;

Aggregate Functions and Grouping

QUERY

Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY),λ AVG (SALARY) FROM EMPLOYEE;

QUERY

Find the sum of the salaries of all employees of the ‘Research’ department, as well as the maximum salary, the minimum

salary, and the average salary in this department.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY) FROM EMPLOYEE, DEPARTMENT WHERE

DNO=DNUMBER AND DNAME=‘Research’;

QUERY

Count the number of distinct salary values in the database. SELECT COUNT (DISTINCT SALARY) FROM EMPLOYEE;

SELECT LNAME, FNAME FROM EMPLOYEE WHERE (SELECT COUNT (*) FROM DEPENDENT WHERE SSN=ESSN) >= 2;

For each project on which more than two employees work, retrieve the project number, the

project name, and the number of employees who work on the project.

SELECT PNUMBER, PNAME, COUNT (*)λ FROM PROJECT, WORKS_ON WHERE PNUMBER=PNO GROUP BY PNUMBER,

PNAME HAVING COUNT (*) > 2;

Insert, Delete, and Update Statements in SQL

INSERT COMMAND

INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’,‘98 Oak Forest,Katy,TX’, ‘M’, 37000,

‘987654321’, 4);

INSERT INTO EMPLOYEE (FNAME, LNAME, DNO) VALUES (‘Robert’, ‘Hatcher’, 5);

CREATE TABLE DEPTS_INFO (DEPT_NAME VARCHAR(15), NO_OF_EMPS INTEGER, TOTAL_SAL INTEGER); INSERT INTO

DEPTS_INFO (DEPT_NAME,λ NO_OF_EMPS, TOTAL_SAL) SELECT DNAME, COUNT (*), SUM (SALARY) FROM

(DEPARTMENT JOIN EMPLOYEE ON DNUMBER=DNO) GROUP BY DNAME;

DELETE COMMAND

DELETE FROM EMPLOYEE WHERE LNAME=‘Brown’; DELETE FROM EMPLOYEE WHERE SSN=‘123456789’;

The UPDATE Command

UPDATE PROJECT SET PLOCATION = ‘Bellaire’, DNUM = 5 WHERE PNUMBER=10;

Module 3: SQL DML (Data Manipulation Language), Physical Data Organization

SQL DML (Data Manipulation Language) - SQL queries on single and multiple tables, Nested queries (correlated and

non-correlated), Aggregation and grouping, Views, assertions, Triggers, SQL data types. Physical Data Organization -

Review of terms: physical and logical records, blocking factor, pinned and unpinned organization. Heap files, Indexing,

Singe level indices, numerical examples, Multi-level-indices, numerical examples, B-Trees & B+-Trees (structure only,

algorithms not required), Extendible Hashing, Indexing on multiple keys – grid files.

What is relational database design?

The grouping of attributes to form "good" relation schemas

- Two levels of relation schemas:

- The logical "user view" level

- The storage "base relation" level

- Normalization is concerned mainly with base relations

Criteria for "good" base relations

1.1 Semantics of the Relation Attributes

GUIDELINE 1: Informally, each tuple should represent one entity or relationship instance.

- Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should not be mixed in the

same relation

- Only foreign keys should be used to refer to other entities

- Entity and relationship attributes should be kept apart as much as possible.

Bottom Line: Design a schema that can be explained easily relation by relation. The semantics of attributes

should be easy to interpret.

1.2 Redundant Information in Tuples and Update Anomalies

- Mixing attributes of multiple entities may cause problems

- Information is stored redundantly wasting storage

- Problems with update anomalies:

- Insertion anomalies

- Deletion anomalies

- Modification anomalies

GUIDELINE 2: Design a schema that does not suffer from the insertion, deletion and update anomalies. If there

are any present, then note them so that applications can be made to take them into account.

1.3 Null Values in Tuples

GUIDELINE 3: Relations should be designed such that their tuples will have as few NULL values as possible

- Attributes that are NULL frequently could be placed in separate relations (with the primary key)

- Reasons for nulls:

a. attribute not applicable or invalid

b. attribute value unknown (may exist)

c. value known to exist, but unavailable

1.4 Spurious Tuples

- Bad designs for a relational database may result in erroneous results for certain JOIN operations

- The "lossless join" property is used to guarantee meaningful results for join operations

GUIDELINE 4: The relations should be designed to satisfy the lossless join condition. No spurious tuples

should be generated by doing a natural-join of any relations.

Functional Dependencies

- Functional dependencies (FDs) are used to specify formal measures of the "goodness" of relational designs

- FDs and keys are used to define normal forms for relations

- FDs are constraints that are derived from the meaning and interrelationships of the data attributes

- A set of attributes X functionally determines a set of attributes Y if the value of X determines

a unique value for Y X -> Y in R specifies a constraint on all relation instances r(R)

- For any two tuples t1 and t2 in any relation instance r(R):

If t1[X]=t2[X], then t1[Y]=t2[Y]

- X -> Y holds if whenever two tuples have the same value for X, they must have the same value for Y

- FDs are derived from the real-world constraints on

the attributes An FD is a property of the attributes in the

+
 +
)

- X can be calculated by repeatedly applying A1, A2, A3 using
the FDs in F

Equivalence of Sets of FDs

F

X

+

schema R

- The constraint must hold on every relation instance r(R)

- If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples

with t1[K]=t2[K])

Armstrong's inference rules:

A1. (Reflexive) If Y subset-of X, then X -> Y

A2. (Augmentation) If X -> Y, then XZ -> YZ

(Notation: XZ stands for X U Z)

A3. (Transitive) If X -> Y and Y -> Z, then X -> Z

- A1, A2, A3 form a sound and complete set of inference rules

Some additional inference rules that are useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z

(Union) If X -> Y and X -> Z, then X -> YZ

(Psuedotransitivity) If X -> Y and WY -> Z, then WX ->

Z

The last three inference rules, as well as any other inference rules, can be deduced from A1, A2, and A3

(completeness property)

CLOSURE

+
Closure of a set F of FDs is the set of all FDs that can be inferred from F

+
- Closure of a set of attributes X with respect to F is the set of all attributes that are functionally

determined

 by X

- Two sets of FDs F and G are equivalent if: every FD in F can be inferred from G, and every FD in G can

be

+ +

inferred from F. Hence, F and G are equivalent if F =G

- Definition: F covers G if every FD in G can be inferred from F (i.e., if G subset-of F

- F and G are equivalent if F covers G and G covers F

- There is an algorithm for checking equivalence of sets of FDs

Minimal Sets of FDs

A set of FDs is minimal if it satisfies the following conditions:

(1) Every dependency in F has a single attribute for its RHS.

(2) We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.

(3) We cannot replace any dependency X -> A in F with a dependency Y -> A, where Y proper-subset-of X

and still have a set of dependencies that is equivalent to F.

- Every set of FDs has an equivalent minimal set

- There can be several equivalent minimal sets

- There is no simple algorithm for computing a minimal set of FDs that is equivalent to a set F of FDs

- Having a minimal set is important for some relational design algorithms

- Normalization: Process of decomposing unsatisfactory "bad" relations by breaking up their attributes into

smaller relations

- Normal form: Condition using keys and FDs of a relation to certify whether a relation schema is in a

particular normal form

- 2NF, 3NF, BCNF based on keys and FDs of a relation schema

- 4NF based on keys, MVDs; 5NF based on keys,

-Additional properties may be needed to ensure a good relational design (lossless join, dependency preservation;

The purpose of normalizing data

When we design a database for a relational system, the main objective in developing a logical data model

is to create an accurate representation of the data, its relationships and constraints. To achieve this

objective, we must identify a suitable set of relations. A technique that we can use to help identify such

relations is called normalization. Normalization is a technique for producing a set of relations with

desirable properties, given the data requirements of an enterprise. Normalization supports database

designers by presenting a series of tests, which can be applied to individual relations so that a relational

schema can be normalized to a specific form to prevent the possible occurrence of update anomalies.

FIRST NORMAL FORM

First normal form (1NF) is now considered to be part of the formal definition of a relation in the basic

(flat) relational model. It states that:

1. The domain of an attribute must include only atomic (simple, indivisible) values and

2. That the value of any attribute in a tuple must be a single value from the domain of that attribute.

Hence, 1NF disallows having a set of values, a tuple of values, or a combination of both as an attribute

value for a single tuple. In other words, 1NF disallows relations within relations or relations as attribute

values within tuples. The only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema, whose primary key is Dnumber, and suppose that we

extend it by including the Dlocations attribute. Assuming each department can have a number of

locations. This is not in 1NF because Dlocations is not an atomic attribute

SECOND NORMAL FORM

Second normal form (2NF) is based on the concept of full functional dependency. Functional

Dependency: The attribute B is fully functionally dependent on the attribute A if each value of A

determines one and only one value of B.

Example: PROJ_NUM, PROJ_NAME In this case, the attribute PROJ_NUM is known as the determinant

attribute and the attribute PROJ_NAME is known as the dependent attribute.

Generalized Definition: Attribute A determines attribute B (that is B is functionally dependent on A) if

all of the rows in the table that agree in value for attribute A also agree in value for attribute B. Fully

functional dependency (composite key) If attribute B is functionally dependent on a composite key A but

not on any subset of that composite key, the attribute B is fully functionally dependent on A. Partial

Dependency: When there is a functional dependence in which the determinant is only part of the

primary key, then there is a partial dependency. For example if (A, B) ◊ (C, D) and B◊ C and (A, B) is the primary key,
then the functional dependence B◊ C is a partial dependency. {Ssn, Pnumber} → Hours is a full dependency (neither Ssn
→ Hours nor Pnumber→Hours holds). However, the dependency {Ssn, Pnumber}→Ename is partial because
Ssn→Ename holds.

Module 4: Normalization

Different anomalies in designing a database, The idea of normalization, Functional dependency, Armstrong’s Axioms (proofs

not required), Closures and their computation, Equivalence of Functional Dependencies (FD), Minimal Cover (proofs not

required). First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF), Boyce Codd Normal Form

(BCNF), Lossless join and dependency preserving decomposition, Algorithms for checking Lossless Join (LJ) and Dependency

Preserving (DP) properties.

normalization

• Normalization is the process of organizing the data in the database

• It is used to minimize the redundancy from a relation or set of relations

• It is also used to eliminate the insertion anomaly,update anomaly and deletion anomaly

• It divides the larger table into the smaller table and links them using relationship

Update anomalies

Deletion anomalies Insert

anomalies

Functional dependency

• A functional dependency is an association between two attributes of the same

relational database table.

• One of the attributes is called the determinant and the other attribute is called the determined

• If A is the determinant and B is the determined then we say that A functionally determines B
and graphically represent this as A -> B

Armstrong’s Axioms

• Armstrong’s Axiom is a mathematical notation used to find the functional dependencies in

a database.

• Conceived by William W. Armstrong

• It is a list of axioms or inference rules that can be implemented on any
relational database.

• It is denoted by the symbol F+.

Closure Of Functional Dependency

• The Closure Of Functional Dependency means the complete set of all possible attributes that

can be functionally derived from given functional dependency

● If “F” is a functional dependency then closure of functional dependency can be denoted using
“{F}+ ”.

● There are three steps to calculate closure of functional dependency

Step-1 : Add the attributes which are present on Left Hand Side in the original functional
dependency.

Step-2 : Now, add the attributes present on the Right Hand Side of the functional dependency.

Step-3 : With the help of attributes present on Right Hand Side, check the other attributes that
can be derived from the other given functional dependencies. Repeat this process until all the
possible attributes which can be derived are added in the closure.

Example:

Consider the table student_details having (Roll_No, Name,Marks, Location) as the attributes and having

two functional dependencies.

FD1 : Roll_No -> Name, Marks FD2 :

Name -> Marks, Location

Step-1: {Roll_no}+ = {Roll_No}

Step-2 : {Roll_no}+ = {Roll_No,Name, Marks}

Step-3 : {Roll_no}+ = {Roll_No, Marks, Name, Location}

Step-1 : {Name}+ = {Name}

Step-2 : {Name}+ = {Name, Marks, Location}

Step-3 : Since, we don’t have any functional dependency where “Marks or Location”. So {Name}+ =

{Name, Marks, Location}

{Marks}+ = {Marks} and {Location}+ = { Location}

Equivalence of Functional Dependencies (FD)

• Two different sets of functional dependencies for a given relation may or may not be
equivalent.

● If FD1 can be derived from FD2, we can say that FD2 ➼ FD1.

● If FD2 can be derived from FD1, we can say that FD1 ➼ FD2.

● If above two cases are true, FD1=FD2.

Eg:A relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D} and FD2 = {A->B, B->C, A->C,

A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

● A->B YES

● B->C YES

● AB->D YES For set FD2, (AB)+ =

{A,B,C,D}. FD2 ➼ FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

● A->B YES

● B->C YES

● A->C YES For set FD1, (A)+ = {A,B,C,D}.

● A->D YES For set FD1, (A)+ =

{A,B,C,D} FD1 ➼ FD2 is true.

Step 3. As FD2 ➼ FD1 and FD1 ➼ FD2 both are true FD2 =FD1 is true. These two FD sets are semantically

equivalent.

Minimal Cover

• Whenever a user updates the database, the system must check whether any of the functional
dependencies are getting violated in this process. If there is a violation of dependencies in the new
database state, the system must roll back. Working with a huge set of functional dependencies can
cause unnecessary added computational time. This is where the minimal cover comes into play.

There are 4 rules to find Minimal cover :

1. Break down the RHS of each functional dependency into a single attribute

2. Find redundant fds

3. Minimize LHS.

4. Group the functional dependencies that have common LHS together into a Single FD .

Q1. Minimal cover of F with dependencies F={BC->ADEF, F->DE} ?

STEP 1: Break down the RHS

BC->A BC->D BC->E BC->F F->D F->E

STEP 2: Find redundant fds

● Assume BC->A is redundant fd and we remove this fd,now try computing
(BC)+={BCDEF} but there is no A. so BC->A is not redundant

● BC->D (BC)+={BCAEFD}, D is present so BC->D is redundant

● BC->E (BC)+={BCADFE}, E is present so BC->E is redundant

● BC->F (BC)+={BCADE}, F is not present so BC->F is not redundant so we
get

BC->A BC->F F->D F->E

BC->A BC->F F->D F->E

STEP 3: Minimize LHS

BC->A BC->F

● From BC-> A, if we remove B and then we get C->A. By taking closure (C)+={C,A},
there is no B. same way remove C then B->A. By taking closure there is no C. So it can’t
be minimize

● BC->F ,it also can’t be minimize so
we get

BC->A BC->F F->D F->E

Step 4: Group the functional dependencies that have common LHS together into a Single FD .

so the minimal cover is

BC->A F F->DE

index

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)

 Boyce Codd Normal Form (BCNF)

 normalization

• Normalization is the process of organizing the data in the database

• It is used to minimize the redundancy from a relation or set of relations

• It is also used to eliminate the insertion anomaly,update anomaly and deletion anomaly

• It divides the larger table into the smaller table and links them using relationship

First Normal Form (1NF)

• A relation will be 1NF if it contains an atomic value.

• It states that an attribute of a table cannot hold multiple values. It must hold only single-
valued attribute.

Second Normal Form (2NF)

• In the 2NF, relational must be in 1NF.

• In the second normal form, No non-prime attribute is dependent on the proper subset of any
candidate key of table

Non-prime attribute: An attribute that is not a part of any candidate key

Third Normal Form (3NF)

• In 3NF,the relation must be in 2NF

• Transitive functional dependency of non-prime attribute on any super key should be removed

Transitive functional dependency: A->B & B->C ,THEN A->C

Super key in the table above:

{EMP_ID}, {EMP_ID, EMP_NAME},

{EMP_I D, EMP_NAME, EMP_ZIP}. so
on

Candidate key: {EMP_ID}

Non-prime attributes: In the given

table, all attributes except EMP_ID are non-

prime

Boyce Codd Normal Form (BCNF)

• BCNF is the advance version of 3NF.

• A table is in BCNF if every functional dependency X C Y, X is

the super key of the table.

In the above table Functional
dependencies are as follows: 1.EMP_ID
C EMP_COUNTRY

2. EMP_DEPT C {DEPT_TYPE, EMP_
DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

 index

 Lossless join and dependency preserving decomposition

 Algorithms for checking Lossless Join (LJ)

Lossless join and dependency preserving decomposition

• Decomposition of a relation is done when a relation in relational model is not in appropriate
normal form.

• Relation R is decomposed into two or more relations if decomposition is lossless join as well as
dependency preserving.

Lossless Join Decomposition

• If the information is not lost from the relation that is decomposed, then the decomposition

will be lossless.

• ie, the relation is said to be lossless decomposition if natural joins of all the decomposition
give the original relation.

• If we decompose a relation R into relations R1 and R2

1. Decomposition is lossy if R1 œ R2 is not R

2. Decomposition is lossless if R1 œ R2 is equal to R

satisfy every dependency.

Employee Department

Dependency Preserving Decomposition

• The dependency preservation property, which ensures that each functional dependency
is represented in some individual relation resulting after decomposition

• In the dependency preservation, at least one decomposed table must

ti f v r de e n

œ

Algorithms for checking Lossless Join (LJ)

R(A,B,C,D,E)

F:{A->B, BC->E, ED->A}

R is decomposed into R1(AB) and R2(ACDE)

Step 1 − Create a table with M rows and N columns

• M= number of decomposed relations.

• N= number of attributes of original relation.

Step 2 − If a decomposed relation Ri has attribute A then Insert a symbol

(say ‘a’) at position (Ri,A)

https://www.keralanotes.com/

For More Study Materials : https://www.keralanotes.com/

Step 3 − Consider each FD X->Y

If column X has two or more symbols then

Insert symbols in the same place (rows) of column Y.

Now let us insert symbol ‘a’ for A->B in second column, second row

Step 4 − If any row is completely filled with symbols then

Decomposition is lossless.

Else R2 is completely filled => decomposition is lossless.

Decomposition is lossy.

Module 5: Transactions, Concurrency and Recovery, Recent Topics

http://www.keralanotes.com/
http://www.keralanotes.com/

https://www.keralanotes.com/

For More Study Materials : https://www.keralanotes.com/

Transaction Processing Concepts - overview of concurrency control, Transaction Model, Significance of concurrency

Control & Recovery, Transaction States, System Log, Desirable Properties of transactions. Serial schedules, Concurrent

and Serializable Schedules, Conflict equivalence and conflict serializability, Recoverable and cascade-less schedules,

Locking, Two-phase locking and its variations. Log-based recovery, Deferred database modification, check-pointing.

Introduction to NoSQL Databases, Main characteristics of Key-value DB (examples from: Redis), Document DB

(examples from: MongoDB) Main characteristics of Column - Family DB (examples from: Cassandra) and Graph DB

(examples from : ArangoDB)

transact

ion
• Transactions group a set of tasks into a single

execution unit.

• Each transaction begins with a specific task and
ends when all the tasks in the group successfully
complete.

• If any of the tasks fail, the transaction fails.
Therefore, a transaction has only two results:
success or failure.

• Incomplete steps result in the failure of the
transaction.

• A database transaction, by definition, must be

http://www.keralanotes.com/
http://www.keralanotes.com/

For More Study Materials : https://www.keralanotes.com/

CONCURRENCY CONTROL

Concurrency Control in Database Management System
is a procedure of managing simultaneous operations
without conflicting with each other

 Concurrency Control Protocols

• Lock-Based Protocols

• Two Phase Locking Protocol

• Timestamp-Based Protocols

• Validation-Based Protocols

https://www.keralanotes.com/

http://www.keralanotes.com/
http://www.keralanotes.com/

1. LOCK-BASED PROTOCOLS

• Lock Based Protocols in DBMS is a mechanism in which a

transaction cannot Read or Write the data until it acquires an
appropriate lock.

• Lock based protocols help to eliminate the concurrency problem
in DBMS for simultaneous transactions by locking or isolating a
particular transaction to a single user.

• All lock requests are made to the concurrency-control
manager. Transactions proceed only once the lock request is
granted.

TWO PHASE LOCKING PROTOCOL (2 PL Protocol)

• It is a method of concurrency control in DBMS that ensures serializability by
applying a lock to the transaction data which blocks other transactions to
access the same data simultaneously

Growing Phase: In this phase transaction may
obtain locks but may not release any locks.

Shrinking Phase: In this phase, a transaction
may release locks but not obtain any new lock

TIMESTAMP-BASED PROTOCOLS

• It is an algorithm which uses the System Time or Logical

Counter as a timestamp to serialize the execution of
concurrent transactions.

• It ensures that every conflicting read and write operations
 are executed in a timestamp order.

• The older transaction is always given priority in this method.

• It uses system time to determine the time stamp of the transaction.

• This is the most commonly used concurrency protocol.

VALIDATION BASED PROTOCOL

• It is also called Optimistic Concurrency Control Technique.
• It is called optimistic because of the assumption it makes, i.e. very less

interference occurs, therefore, there is no need for checking while the
transaction is executed.

• Until the transaction end is reached updates in the transaction are not applied
directly to the database. All updates are applied to local copies of data items
kept for the transaction. At the end of transaction execution, while execution
of the transaction, a validation phase checks whether any of transaction
updates violate serializability. If there is no violation of serializability the
transaction is committed and the database is updated

Tra

Transaction Model

Transactions access data using two operations:

• read(X), which transfers the data item X from the
database to a variable, also called X, in a buffer in
main memory belonging to the transaction that
executed the read operation.

• write(X), which transfers the value in the variable
X in the main-memory buffer of the transaction that
executed the write to the data item X in the
database.

nsaction States

• Active State:When the instructions
of the transaction are running then
the transaction is in active state. If all
the ‘read and write’ operations are
performed without any error then it
goes to the “partially committed
state”; if any instruction fails, it goes
to the “failed state”.

• Partially Committed:After completion of all the read and write operation the
changes are made in main memory or local buffer. If the the changes are made
permanent on the Data Base then the state will change to “committed state” and
in case of failure it will go to the “failed state”.

• Failed State:When any instruction of the transaction fails, it goes to the “failed

state”

• Aborted State :After having any type
of failure the transaction goes from
“failed state” to “aborted state”

• Committed State:It is the state when the changes are made permanent
on the Data Base and the transaction is complete and therefore terminated
in the “terminated state”.

• Terminated State :the transaction comes from the “committed state”
goes to this state, then the system is consistent and ready for new
transaction and the old transaction is terminated.

System

Log
• Log is a sequence of records, which maintains the records of actions

performed by a transaction.

• It is important that the logs are written prior to the actual
modification and stored on a stable storage media, which is failsafe.

Log-based recovery works as follows −

• The log file is kept on a stable storage media.

• When a transaction enters the system and starts execution, it writes a log about it.

• <Tn, Start>

• When the transaction modifies an item X, it write logs as <Tn, X, V1,
V2>.It reads Tn has changed the value of X, from V1 to V2.

• When the transaction finishes, it logs <Tn, commit>

index

 Schedules

 Conflict equivalence

 Recoverable and cascade-less schedules

 Deferred database modification

 check-pointing
schedule

• A series of operation from one transaction to another

transaction is known as schedule.

• It is used to preserve the order of the operation in each
of the individual transaction.

SERIAL SCHEDULE

• The serial schedule is a type of schedule where one transaction is

executed completely before starting another transaction.
• In the serial schedule, when the first transaction completes its

cycle, then the next transaction is executed.

• If interleaving of operations is allowed, then there will be non-
serial schedule.

• It contains many possible orders in which the system can
execute the individual operations of the transactions.

Serializable schedule

• The serializability of schedules is used to find non-

serial schedules that allow the transaction to execute
concurrently without interfering with one another.

• It identifies which schedules are correct when
executions of the transaction have interleaving of
their operations.

• A non-serial schedule will be serializable if its result
is equal to the result of its transactions executed
serially.

SERIALIZABILITY is a concept that helps us to check which

schedules are serializable.

Conflict equivalence

Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.

2. If each pair of conflict operations are ordered in the same way.

cascade - l

Recoverable Schedule

A recoverable schedule is one where, for each pair of Transaction
Ti and Tj such that Tj reads data item previously written

by Ti the commit operation ofTi appears before the commit

operation Tj .

ess schedules

Transaction T10 writes a value of A that is read by Transaction T11. Transaction
T11 writes a value of A that is read by Transaction T12. Suppose at this point T10
fails. T10 must be rolled back, since T11 is dependent on T10, T11 must be rolled
back, T12 is dependent on T11, T12 must be rolled back.

This phenomenon, in which a single transaction failure leads to a series of
transaction rollbacks is called Cascading rollback.

• Restrict the schedules to those where cascading rollbacks cannot
occur, Such schedules are called Cascadeless Schedules.

• A cascadeless schedule is one where for each pair of transaction Ti and Tj

such that Tj reads data item, previously written by Ti the commit
operation of Ti appears before the read operation of Tj

• Every Cascadeless schedule is also recoverable schedule.

Deferred database modification

• The deferred modification technique occurs if the

transaction does not modify the database until it has
committed.

• Ie, the changes are not applied immediately to the
database.

• In this method, all the logs are created and stored in the
stable storage, and the database is updated when a
transaction commits.

If database modifications occur while the transaction is still
active, the transaction is said to use the immediate-modification
technique.

check-pointing

• The methodology utilized for removing all previous transaction
logs and storing them in permanent storage is called a
Checkpoint.

• A checkpoint is used for recovery if there is an unexpected
shutdown in the database.

• Checkpoints work on some intervals and write all dirty pages
(modified pages) from logs relay to data file from i.e from a buffer
to physical disk. It is also known as the hardening of dirty
pages

• It speeds up data recovery process.

Create table employee (id,name , place,designation,salary)

Begin transaction by deleting the details of employ with id 102 and later rollback the changes

Begin transaction by updating salary(increment by 10%) and commit changes being made

use save point in the transaction

index

 NoSQL Databases

 Key-value DB (examples from: Redis)

 Document DB (examples from: MongoDB)

 Column - Family DB (examples
from: Cassandra)

 Graph DB (examples from : ArangoDB)

NoSQL

• NoSQL ("not only SQL") databases are non-
tabular databases and store data differently
than relational tables.

• NoSQL databases come in a variety of types
based on their data model. The main types are
document, key- value, wide-column, and graph.

• They provide flexible schemas and scale
easily with large amounts of data and high user
loads.

The data model we design for a
NoSQL database will depend on the
type of NoSQL database we choose.

Key-value db

• A key-value database (or key-value store) uses a simple
key-value method to store data.

• These databases contain a simple string (the key) that is
always unique and an arbitrary large data field (the value).

• They are easy to design and implement.

An Example of Key-value database

REDIS EXAMPLE

• For the vast majority of data storage with Redis, data
will be stored in a simple key/value pair. This is best
shown through the redis-cli (command
 line interface) using GET and SET commands.

• EG: we may want to store some information about
books, such as the title and author of a few of our
favorites.

> SET title "The Hobbit"

OK

>SET author "J.R.R. Tolkien"

OK

DOCUMENT DB

• Built around JSON-like documents, document
databases are both natural and flexible for
developers to work with.

• They promise higher developer productivity, and

faster evolution with application needs.

• As a class of non-relational, sometimes called
NoSQL database, the document data model has
become the most popular alternative to
tabular, relational databases.

column family will be " ID , NAME , Age" ,
City".

MONGODB EXAMPLE

Column - Family DB
Column-family databases store data in column families as rows that have many
columns associated with a row key

Example:

• RDBMS: Table having the columns ID , Name , Age,
Gender, City.

GRAP

abases

store sch

Cassandra EXAMPLE

H DB

• Graph
dat

s re ema-free objects (vertices

or nodes) where arbitrary data can be stored
(properties) and relations between the objects
(edges).

• Edges typically have a direction going from one
object to another or multiple objects.

• Vertices and edges form a network of data
points which is called a “graph”.

ArangoDB EXAMPLE

LET data = [

{

"parent": { "name": "Ned", "surname": "Stark" },

"child": { "name": "Robb", "surname": "Stark" }

}, {

"parent": { "name": "Ned", "surname": "Stark" },

"child": { "name": "Sansa", "surname": "Stark" }

}, {

"parent": { "name": "Ned", "surname": "Stark" },

"child": { "name": "Arya", "surname": "Stark" }

}, {

"parent": { "name": "Ned", "surname": "Stark" },

"child": { "name": "Bran", "surname": "Stark" }

}………………………..

]

